Health Benefits of Isoflavones Found Exclusively of Plants of the Fabaceae Family

  • Chapter
  • First Online:
Functional Foods and Nutraceuticals

Abstract

This chapter presents recent studies on the health benefits of isoflavones from the flowering plants of the Leguminosae family- Fabaceae, which are commonly known as the legume, pea, or bean family. Notable agricultural and food plants in this family are Glycine max (soybean), Phaseolus (beans), Pisum sativum (pea), Medicago sativa (alfalfa), Arachis hypogaea (peanut), Ceratonia siliqua (carob), and Glycyrrhiza glabra (liquorice). It was established from literary sources that extracts from these plants, including the invasive species contains important isoflavones. Prominent among the isoflavones biologically active aglycones: genistein, daidzein, and glycitein. Other isoflavones are ononin and sissotrin, with their aglycones, formononetin and biochanin A respectively. These compounds have been described to be active against some life-threatening diseases such as cancer, diabetes, cardiovascular diseases among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdalla WE, Koko WS (2018) Review of sudanese medicinal plants tested for antiparasitical activity. Am J Innov Res Appl Sci 6(2):76–85

    Google Scholar 

  • Accorsi-Neto A, Haidar M, Simoes R, Simoes M, Soares-Jr J, Baracat E (2009) Effects of isoflavones on the skin of postmenopausal women: a pilot study. Clinics (Sao Paulo) 64:505–510

    Article  Google Scholar 

  • Addotey JN, Lengers I, Jose J, Gampe N, Béni S, Petereit F, Hensel A (2018) Isoflavonoids with inhibiting effects on human hyaluronidase-1 and norneolignan clitorienolactone B from Ononis spinosa L. root extract. Fitoterapia 130:169–174

    Article  CAS  PubMed  Google Scholar 

  • Al O-AA, Kouakou TH, Brou KD, Kouadio YJ, Gnakri D (2010) Evaluation of bioactive components in seeds of Phaseolus vulgaris L.(fabaceae) cultivated in Côte d’Ivoire. J Appl Biosci 31:1928–1934

    Google Scholar 

  • Alharbi WDM, Azmat A (2011) Hypoglycemic and hypocholesterolemic effects of Acacia tortilis (Fabaceae) growing in Makkah. Pak J Pharmacol 28(1):1–8

    Article  Google Scholar 

  • Ali K, Maltese F, Figueiredo A, Rex M, Fortes AM, Zyprian E, Pais MS, Verpoorte R, Choi YH (2012) Alterations in grapevine leaf metabolism upon inoculation with Plasmoparaviticolain different time-points. Plant Sci 191-192:100–107. https://doi.org/10.1016/j.plantsci.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  • Ameer K, Shahbaz HM, Kwon J-H (2017) Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr Rev Food Sci Food Saf 16(2):295–315

    Article  PubMed  Google Scholar 

  • Arabi Z, Sardari S (2010) An investigation into the antifungal property of Fabaceae using bioinformatics tools. Avicenna J Med Biotechnol 2(2):93–100

    PubMed  PubMed Central  Google Scholar 

  • Arote SR, Dahikar SB, Yeole PG (2009) Phytochemical screening and antibacterial properties of leaves of Pongamia pinnata Linn. (Fabaceae) from India. Afr J Biotechnol 8(22):6393–6396

    Article  Google Scholar 

  • Arul PR, Saravanan K, Akbarsha MA, Umarani B, Egbuna C (2018) In vitro anticancer activity of Pisum sativum seed against breast cancer cell line (MCF-7). Int J Sci Eng Res 9(6):17–24

    Google Scholar 

  • Aruna PS, Saravanaraja DM (2016) Antibacterial efficacy of Fabaceae plants of a tropical lake of South India. Int J Res Pharm Sci 6(3):1–5

    Google Scholar 

  • Assefa Z, Van Laethem A, Garmyn M, Agostinis P (2005) Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755:90–106

    CAS  PubMed  Google Scholar 

  • Atchibri ALO, Brou KD, Kouakou TH, Kouadio YJ, Gnakri, D (2010) Screening for antidiabetic activity and phytochemical constituents of common bean (Phaseolus vulgaris L.) seeds. Journal of Medicinal Plants Research 4(17):1757–1761.

    Google Scholar 

  • Atmaca A, Kleerekoper M, Bayraktar M (2008) Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 15:748–757

    Article  PubMed  Google Scholar 

  • Aung AA (2011) Chemical investigation and antimicrobial activities of Sesbania grandiflora L. Univ Res J 4(1):337–350

    Google Scholar 

  • Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreira JCM, Visnevschi-Necrasov T, Pereira G, Nunes E, Beatriz M, Oliveira PP (2017) Phytochemical profiling of underexploited Fabaceae species: insights on the ontogenic and phylogenetic effects over isoflavone levels. Food Res Int 100:517–523

    Article  CAS  PubMed  Google Scholar 

  • Besong EE, Balogun ME, Djobissie SFA, Obu DC, Obimma JN (2016) Medicinal and economic value of Dialium guineense. Afr J Biomed Res 19:163–170

    Google Scholar 

  • Bolanos R, Del Castillo A, Francia J (2010) Soy isoflavones versus placebo in the treatment of climacteric vasomotor symptoms: systematic review and meta-analysis. Menopause 17:660–666

    Article  PubMed  Google Scholar 

  • Bolca S (2014) Bioavailability of soy-derived isoflavones and human breast cancer. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease. Elsevier, Amsterdam, pp 1241–1256. https://doi.org/10.1016/B978-0-12-398456-2.00094-3

    Chapter  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry-based metabolomics application to identify quantitativeresistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budryn G, GaÅ‚Ä…zka-Czarnecka I, Brzozowska E, Grzelczyk J, Mostowski R, Å»yżelewicz D, Cerón-Carrasco JP, Pérez-Sánchez H (2018) Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular modelling. Food Chem 245:324–336. https://doi.org/10.1016/j.foodchem.2017.10.100

    Article  CAS  PubMed  Google Scholar 

  • Burkart AL (1987) In: Dimitri M (ed) Enciclopedia Argentina de Agricultura y Jardineria, Tomo I. Descripcion de plantas Cultivadas. Editorial ACME S.A.C.I., Buenos Aires, pp 467–536

    Google Scholar 

  • Cano A, Garcia-Perez MA, Tarin JJ (2010) Isoflavones and cardiovascular disease. Maturitas, 67(3):219–226

    Google Scholar 

  • Carter A, Rajcan I, Woodrow L, Navabi A, Eskandari M (2018) Genotype, environment, and genotype by environment interaction for seed isoflavone concentration in soybean grown in soybean cyst nematode infested and non-infested environments. Field Crop Res 216:189–196. https://doi.org/10.1016/j.fcr.2017.11.021

    Article  Google Scholar 

  • Cederroth CR, Nef S (2009) Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol 304(1–2):30–42. https://doi.org/10.1016/j.mce.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  • Chanda S, Dudhatra S, Kaneria M (2010) Antioxidative and antibacterial effects of seeds and fruit rind of nutraceutical plants belonging to the Fabaceae family. Food Funct 1:308–315

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chaurasia S, Saxena R (2012) Antibacterial activity of four different varieties of green beans. Res J Pharm, Biol Chem Sci 3(3):70–74

    Google Scholar 

  • Chiang HS, Wu WB, Fang JY, Chen BH, Kao TH, Chen YT, Huang CC, Hung CF (2007) UVB-protective effects of isoflavone extracts from soybean cake in human keratinocytes. Int J Mol Sci 8:651–661

    Article  CAS  PubMed Central  Google Scholar 

  • Chiu TM, Huang CC, Lin TJ, Fang JY, Wu NL, Hung CF (2009) In vivo and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. J Ethnopharmacol 126:108–113

    Article  CAS  PubMed  Google Scholar 

  • Choudhury MK, Shiferaw Y, Hussen A (2015) Toxicity of Millettia ferruginea darasana (family: Fabaceae) against the larvae and adult ticks of Amblyomma variegatum Fabricius a three-host tick in cattle. J Parasit Dis 39(2):298–302. https://doi.org/10.1007/s12639-013-0311-8

    Article  PubMed  Google Scholar 

  • Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)—Fusarium oxysporum dianthipathosystem. J Phytopathol 153:65–67

    Article  CAS  Google Scholar 

  • D’Agostina A, Arnoldi A, Magni C, Duranti M, Morandi S, Manzoni C, Lovati MR, Castiglioni S, Sirtori CR (2004) Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 134(1):18–23. https://doi.org/10.1093/jn/134.1.18

    Article  PubMed  Google Scholar 

  • Darsini IP, Shamshad AS (2015) Antimicrobial activity and phytochemical evaluation of Clitoria Ternatea. Int J Sci Res 4(5):823–825

    Google Scholar 

  • Delmonte P, Perry J, Rader JI (2006) Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: extraction followed by basic or acid hydrolysis. J Chromatogr A 1107(1–2):59–69

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Chen S, Yin X, Wang K, Liu Y, Li S, Yang P (2013) Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chem 139(1–4):307–312

    Article  CAS  PubMed  Google Scholar 

  • Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125:315–323

    Article  CAS  PubMed  Google Scholar 

  • Draelos ZD, Blair R, Tabor A (2007) Oral soy supplementation and dermatology. Cosmet Dermatol 20:202–204

    Google Scholar 

  • Dzoyem JP, McGaw LJ, Eloff JN (2014) In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity. BMC Complement Altern Med 14:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eyles A, Davies NW, Yuan ZQ, Mohammed C (2003) Host response to natural infection byCytonaema sp. in the aerial bark of Eucalyptus globulus. For Pathol 33:317–331

    Article  Google Scholar 

  • Foster-Hartnett D, Danesh D, Penuela S, Sharopova N, Endre G, Vandenbosch KA, Young ND, Samac DA (2007) Molecular and cytological responses of MedicagotruncatulatoErysiphepisi. Mol Plant Pathol 8:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fritz H, Seely D, Flower G, Skidmore B, Fernandes R, Vadeboncoeur S, Kennedy D, Cooley K, Wong R, Sagar S (2013) Soy, red clover, and isoflavones and breast cancer: A systematic review. PLoS One 8(11):e81968. https://doi.org/10.1371/journal.pone.0081968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gafner S, Wolfender JL, Mavi S, Hostettmann K (1996) Antifungal and antibacterial chalconesfromMyricaserrata. Planta Med 62:67–69

    Article  CAS  PubMed  Google Scholar 

  • Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008) Flavonoids from carnation (Dianthuscaryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

    Article  CAS  Google Scholar 

  • GaÅ‚uszka A, Migaszewski Z, NamieÅ›nik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 2013(50):78–84

    Article  CAS  Google Scholar 

  • Gao JQ, Liu ZJ, Chen T, Zhao DQ (2014) Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of Radix astragali. Pharm Biol 52(9):1217–1222. https://doi.org/10.3109/13880209.2013.879188

    Article  CAS  PubMed  Google Scholar 

  • Garjani A, Fathiazad F, Zakheri A, Akbari NA, Azarmie Y, Fakhrjoo A, Andalib S, Maleki-Dizaji N (2009) The effect of total extract of Securigera securidaca L. seeds on serum lipid profiles, antioxidant status, and vascular function in hypercholesterolemic rats. J Ethnopharmacol 126(3):525–532. https://doi.org/10.1016/j.jep.2009.09.003

    Article  PubMed  Google Scholar 

  • Girardi FA, Tonial F, Chini SO, Sobottka AM, Scheffer-Basso SM, Bertol CD (2014) Phytochemical profile and antimicrobial properties of Lotus spp. (Fabaceae). An Acad Bras Cienc 86:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, KsyciÅ„ska H, Ramza J, Zagrodzka J (2005) Chromatographic quantification of isoflavones (why and how). Acta Chromatogr 15:31–65

    CAS  Google Scholar 

  • Hanganu D, Vlase L, Olah N (2010) LC/MS analysis of isoflavones from Fabaceae species extracts. Farmacia 58(2):177–183

    CAS  Google Scholar 

  • Heydari H, IÅŸcan GS, Eryilmaz M, Acikara ÖB, Sarialtin SY, Tekin M, Çoban T (2019) Antimicrobial and anti-inflammatory activity of some Lathyrus L. (Fabaceae) species growing in Turkey. Turk J Pharm Sci 16(2):240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijaz FM, Manthey JA, Folimonova SY, Davis CL, Jones SE, Reyes-De-Corcuera JI (2013) An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile followinginfection by the bacterial pathogen CandidatusLiberibacterasiaticus. PLoS One 8:e79485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama K, Matsuzuka Y, Kamiya T, Ikeguchi M, Takagaki K, Itoh K (2011) Metabolism of isoflavones found in the Pueraria thomsonii flower by human intestinal microbiota. Biosci Microflora 30(4):135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain K, Hassan M, Parvin N, Hasan M, Islam S, Haque A (2012) Antimicrobial, cytotoxic and thrombolytic activity of Cassia senna leaves (family: Fabaceae). J Appl Pharm Sci 2(6):186–190

    Google Scholar 

  • Huang ZR, Hung CF, Lin YK, Fang JY (2008) In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm 364:36–44

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Hsu BY, Wu NL, Tsui WH, Lin TJ, Su CC, Hung CF (2010) Anti-photoaging effects of soy Isoflavone extract (Aglycone and Acetylglucoside form) from soybean cake. Int J Mol Sci 12:4782–4795. https://doi.org/10.3390/ijms11124782

    Article  CAS  Google Scholar 

  • ** SE, Son YK, Min B-S, Jung HA, Choi JS (2012) Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res 35(5):823–837. https://doi.org/10.1007/s12272-012-0508-x

    Article  CAS  PubMed  Google Scholar 

  • Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2002) Plant systematics: a phylogenetic approach. SinauerAxxoc, Sunderland, pp 287–292. ISBN 0-87893-403-0

    Google Scholar 

  • Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) Rbcl and legume phylogeny, with particular reference to Phaseoleae, Millettieae and allies. Syst Bot 26:515–536

    Google Scholar 

  • Kang S, Chung JH, Lee JH, Fisher GJ, Wan YS, Duell EA, Voorhees JJ (2003) Topical N-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo. J Invest Dermatol 120:835–841

    Article  CAS  PubMed  Google Scholar 

  • Kang HB, Zhang YF, Yang JD (2012) Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev 13:995–998

    Article  PubMed  Google Scholar 

  • Kanouni M, Rosano H, Naouli N (2002) Preparation of a stable double emulsion (W-1/O/W-2): role of the interfacial films on the stability of the system. Adv Colloid Interf Sci 99(3):229–254

    Article  CAS  Google Scholar 

  • Khan S, Jan G, Bibi H, Sher J, Ullah S, Abidullah S (2018) Phytochemical screening and antimicrobial activity of the Cichorium intybus (Familyasteraceae) and Medicago sativa (Familyfabaceae) Peshawar, Pakistan. J Pharmacognosy Phytochem 7(3):603–616

    CAS  Google Scholar 

  • Kim SY, Kim SJ, Lee JY, Kim WG, Park WS, Sim YC, Lee SJ (2004) Protective effects of dietary soy isoflavones against UV-induced skin-aging in hairless mouse model. J Am Coll Nutr 23(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kang M, Lee JS (2011) Fermented and non-fermented soy food consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci 102:231–244

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Shin W-K, Kim Y (2019) Effect of lotus seed on viscosity and antioxidant activity of soy-based porridge. Cereal Chem 96(2):220–227. https://doi.org/10.1002/cche.10108

    Article  CAS  Google Scholar 

  • Klejdus, Å tÄ›rbová V, Kubáň (2001) Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography-mass spectrometry after two-dimensional solid-phase extraction. Anal Chim Acta 450(1–2):81–97

    Article  CAS  Google Scholar 

  • Ko KP, Park SK, Park B (2010) Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol Biomark Prev 19:1292–1300

    Article  CAS  Google Scholar 

  • Kolodziejczyk-Czepas J (2012) Trifolium species-derived substances and extracts—biological activity and prospects for medicinal applications. J Ethnopharmacol 143(1):14–23. https://doi.org/10.1016/j.jep.2012.06.048

    Article  PubMed  Google Scholar 

  • Kolodziejczyk-Czepas J, Olas B, Malinowska J, Wachowicz B, Szajwaj B, Kowalska I, Oleszek W, Stochmal A (2013) Extracts from Trifolium pallidum and Trifolium scabrum aerial parts as modulators of blood platelet adhesion and aggregation. Platelets 24(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Küçükboyacı N, Özkan S, Tosun F (2012) Gas chromatographic determination of quinolizidine alkaloids in Genista sandrasica and their antimicrobial activity. Rec Nat Prod 6(1):71–74

    Google Scholar 

  • Kwon DY, Daily JW, Kim HJ (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 30:1–13

    Article  CAS  PubMed  Google Scholar 

  • Lephart E, Lund T, Handa R, Collins F, Setchell K (2005) Antiaging effects of equol: a unique antiandrogenic isoflavone metabolite and its influence in stimulating collagen deposition in human dermal monolayer fibroblasts. J Am Acad Dermatol 52(3):P85–P85

    Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. The Royal Botanic Gardens. Kew Reino Unido. Bol Soc Bot Méx 77:75–77. https://doi.org/10.1017/S0960428606190. 198

    Article  Google Scholar 

  • Li SH, Liu XX, Bai YY (2010) Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta-analysis of randomized placebo-controlled trials. Am J Clin Nutr 91:480–486

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen Q, Bu Y, Luo R, Hao S, Zhang J, Tian J, Yao Y (2017) Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves. Front Plant Sci 8:1286. https://doi.org/10.3389/fpls.2017.01286

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu L-JW, Chen N-W, Fatima N, Sadagopa Ramanujam VM, Kuo Y-F, Brunder DG, Nagamani M, Anderson KE (2018) Novel effects of phytoestrogenic soy isoflavones on serum calcium and chloride in premenopausal women: A 2-year double-blind, randomized, placebo-controlled study. Clin Nutr 37(6):1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zheng S, Ding Y, Dai Y, Zhou Y, **ang R, Bay-Jensen AC, Karsdal MA, Qvist P, Zheng Q (2017) Preventive effects of kudzu root on bone loss and cartilage degradation in ovariectomized rat. Am J Transl Res 9(7):3517–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magalion SA, Sanderson KR (2001) Absolute diversification rates in angiosperm clades. Evolution 55(9):1762–1780

    Article  Google Scholar 

  • Maksimov OB, Krivoshchekova OE, Stepanenko LS, Boguslavskaya LV (1985) Isoflavones and stilbenes of the heartwood ofMaackia amurensis. Chem Nat Compd 21(6):735–740. https://doi.org/10.1007/BF00576208

    Article  Google Scholar 

  • Marini H, Polito F, Altavilla D, Irrera N, Minutoli L, Calo M, Adamo EB, Vaccaro M, Squadrito F et al (2010) Genistein aglycone improves skin repair in an incisional model of wound healing: a comparison with raloxifene and oestradiol in ovariectomized rats. Br J Pharmacol 160:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mierziak J, Wojtasik W, Kostyn K, Czuj T, Szopa J, Kulma A (2014) Crossbreeding of transgenicflax plants overproducing flavonoids and glucosyltransferase results in progeny of improvedantifungal and antioxidative properties. Mol Breed 34:1917–1932. https://doi.org/10.1007/s11032-014-0149-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minghetti P, Cilurzo F, Casiraghi A, Montanari L (2006) Evaluation of ex vivo human skin permeation of genistein and daidzein. Drug Deliv 13:411–415

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Hanamizu T, Sone T, Chiba K, Kinoshita T, Yoshikawa S (2004) Topical application of Bifidobacterium-fermented soy milk extract containing genistein and daidzein improves rheological and physiological properties of skin. J Cosmet Sci 55:473–479

    CAS  PubMed  Google Scholar 

  • Moore JO, Wang Y, Stebbins WG, Gao D, Zhou X, Phelps R, Lebwohl M, Wei H (2006) Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinogenesis 27:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Moraes AB, Haidar MA, Soares Junior JM, Simoes MJ, Baracat EC, Patriarca MT (2009) The effects of topical isoflavones on postmenopausal skin: double-blind and randomized clinical trial of efficacy. Eur J Obstet Gynecol Reprod Biol 146:188–192

    Article  CAS  PubMed  Google Scholar 

  • Nandave M, Ojha SK, Arya DS (2005) Protective role of flavonoids in cardiovascular disease. Review article. Nat Prod Radiance 4(3):166–176

    Google Scholar 

  • Ojewole JAO, Drewes SE, Khan F (2006) Vasodilatory and hypoglycaemic effects of two pyrano-isoflavone extractives from Eriosema kraussianum N. E. Br. [Fabaceae] rootstock in experimental rat models. Phytochemistry 67(6):610–617. https://doi.org/10.1016/j.phytochem.2005.11.019

    Article  CAS  PubMed  Google Scholar 

  • Osman SM, Abd El-Khalik SM, Saadeldeen AM, Koheil MA, Wink M (2015) Activity guided phytochemical study of Egyptian Lotus polyphyllos ED Clarke (Fabaceae). Int J App Res Nat Prod 8:18–26

    CAS  Google Scholar 

  • Pahune B, Niranjane K, Danao K, Bodhe M, Rokade V (2013) J Nat Prod Plant Resour 3(2):48–51

    Google Scholar 

  • Parvaiz M, Hussain K, Khalid S, Hussnain N, Iram N, Hussain Z, Ali MA (2014) A review: medicinal importance of Glycyrrhiza glabra L.(Fabaceae family). Global J Pharmacol 8(1):8–13

    CAS  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetinand its seven derivatives on the growth of Arabidopsis thaliana and Neurosporacrassa. Biochem Syst Ecol 32:631–635

    Article  CAS  Google Scholar 

  • Pase MP, Grima NA, Sarris J (2011) The effects of dietary and nutrient interventions on arterial stiffness: a systematic review. Am J Clin Nutr 93:446–454

    Article  CAS  PubMed  Google Scholar 

  • Peluso MR (2006) Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp Biol Med 231(8):1287–1299

    Article  CAS  Google Scholar 

  • Perez RL, Escandar GM (2016) Experimental and chemometric strategies for the development of green analytical chemistry (GAC) spectroscopic methods for the determination of organic pollutants in natural waters. Sustain Chem Pharm 4:1–12

    Article  CAS  Google Scholar 

  • Prakash SB, Sharmistha P, Kumar AR (2009) Antibacterial acitivity of methanolic extract of roots of Caesalpinia pulcherrima. Int J Chem Sci 7(1):16–18

    CAS  Google Scholar 

  • Primiani CN, Pujiati P (2016) Characteristics of pigeon pea (CajanusCajan) isoflavones daidzein in blood on ovarian and mammary tissue structure rat female. In: Prosiding seminar biologi, vol 13(1), pp 593–597

    Google Scholar 

  • Pudenz M, Roth K, Gerhauser C (2014) Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 6:4218–4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin LQ, Xu JY, Wang PY et al (2006) Soyfood intake in the prevention of breast cancer risk in women: a meta-analysis of observational epidemiological studies. J Nutr Sci Vitaminol (Tokyo) 52:428–436

    Article  CAS  Google Scholar 

  • Radwan MM, Ross SA, Slade D, Elsohly MA (2008) Isolation and characterization of new cannabis constituents from a high potency variet. Planta Med 74(3):267–272

    Google Scholar 

  • Rahman MS, Yeasmin MS, Begum MN, Rahman MS (2015) Studies on the isolation of 2, 5, 7, 4′- TetrahydroxyIsoflavone from the leaves of Cassia Alata. Asian J Pharm Anal Med Chem 3(2):64–70

    CAS  Google Scholar 

  • Randrianarivo HR, Razafindrakoto AR, Ratsimanohatra HC, Randriamampianina LJ, Rajemiarimoelisoa CF, Ramamonjisoa L, Ramanitrahasimbola D, Rakoto DAD, Jeannoda VL (2014) Toxic effects of seed methanolic extracts of endemic Albizia species (Fabaceae) from Madagascar on animals. J Life Sci 8(8):676–689

    Google Scholar 

  • Rastogi RM, Mehrotra BN (1993) Compendium Indian medicinal plants, vol II. CDRI, Lucknow and Publication and Information Directorate, New Delhi, p 864

    Google Scholar 

  • Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R (2014) Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Mol Plant Pathol 15(9):948–956. https://doi.org/10.1111/mpp.12145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci E, Cipriani S, Chiaffarino F (2010) Effects of soy isoflavones and genistein on glucose metabolism in perimenopausal and postmenopausal non-Asian women: a meta-analysis of randomized controlled trials. Menopause 17:1080–1086

    Article  PubMed  Google Scholar 

  • Richter CK, Skulas-Ray AC, Fleming JA, Link CJ, Mukherjea R, Krul ES, Kris-Etherton PM (2017) Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose–response randomised controlled trial. Br J Nutr 117(10):1403–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostagno MA, Villares A, Guillamón E, García-Lafuente A, Martínez JA (2009) Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chrom A 1216:2–29

    Article  CAS  Google Scholar 

  • Santanaa DB, da Costa RC, Mendon R, de AJE P, Silveira ER, Braz-Filhod ER, Espindola LS (2015) Activity of Fabaceae species extracts against fungi and Leishmania: vatacarpan as a novel potent anti-Candida agent. Rev Bras 25:401–406

    Google Scholar 

  • Sarg T, Ateya AM, Ghani AA, Badr W, Shams G (1999) Phytochemical and pharmacological studies of Dalbergia Sissoo growing In Egypt. Pharm Biol 37(1):54–62

    Article  CAS  Google Scholar 

  • Sartorelli P, Carvalho CH, Reimao JQ, Ferreira JP, Tempone AG (2009) Antiparasitic activity of biochanin A, an isolated isoflavonefron fruits of Cassia fischula (Leguminosae). J Parasitol Res 104:311–314

    Article  Google Scholar 

  • Sato M, Tanaka H, Fujiwara S, Hirata M, Yamaguchi R, Etoh H, Tokuda C (2002) Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine 9(5):427–433

    Article  Google Scholar 

  • Saxena VK, Sharma DN (1999) A new isoflavone from the roots of Abrusprecatorious. Fitoterapia 70:328–329

    Article  CAS  Google Scholar 

  • Sazdanić D, Mikulić MP, Kladar N, Hogervorst J, KrstonoÅ¡ić MA (2019) Analysis of the factors influencing red clover (Trifolium pratense L., Fabaceae) isoflavone content. Biol Serbica 40(2):34–41

    Google Scholar 

  • Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758–767

    Article  Google Scholar 

  • Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76(2):447–453

    Article  CAS  PubMed  Google Scholar 

  • Sherwood P, Bonello P (2013) Austrian pine phenolics are likely contributors to systemic inducedresistance against Diplodiapinea. Tree Physiol 33:845–854

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S-i (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy (iso) flavonoids in Lotus japonicus. Plant Physiol 131(3):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T, Inoue M, Sasazuki S (2011) Plasma isoflavones and the risk of lung cancer in women: a nested case-control study in Japan. Cancer Epidemiol Biomark Prev 20:419–427

    Article  CAS  Google Scholar 

  • Shin KH, Kim YP, Lim SS, Lee S, Ryu N, Yamada M, Ohuchi K (1999) Inhibition of prostaglandin E2 production by the isoflavones tectorigenin and tectorigenin isolated from the rhizomes of Belamcanda chinensis. Planta Med 65(08):776–777

    Article  CAS  PubMed  Google Scholar 

  • Sisa M, Bonnet SL, Ferreira D, Van der Westhuize JH (2010) Photochemistry of flavonoids. Molecules 15:5196–5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobeh M, ElHawary E, Peixoto H, Labib RM, Handoussa H, Swilam N, El-Khatib AH, Sharapov F, Mohamed T, Krstin S, Linscheid MW, Singab AN, Wink M, Ayoub N (2016) Identification of phenolic secondary metabolites from Schotia brachypetala Sond. (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ 4:e2404. https://doi.org/10.7717/peerj.2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song GC, Ryu SY, Kim YS, Lee JY, Choi JS, Ryu CM (2013) Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae y specific individual compounds derived from native Korean plant species. Molecules 2013(18):12877–12895

    Article  CAS  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, Ames. Lowa, p 12. ISBN 1-4051-8175-3

    Book  Google Scholar 

  • Srinivas KVNS, Koteswara Rao Y, Mahender I, Das B, Krishna KVSR, Kishore KH, Murty USN (2003) Flavonoids from Caesalpinia pulcherrima. Phytochemistry 63:789–793

    Article  CAS  PubMed  Google Scholar 

  • Stevenson PC, Haware MP (1999) Maackiain in Cicer bijugum Rech. f. associated with resistance toBotrytis grey mould. Biochem Syst Ecol 27:761–767

    Article  CAS  Google Scholar 

  • Stevenson S, Thornton J (2007) Effect of estrogens on skin aging and the potential role of SERMs. Clin Interv Aging 2:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavonesynthase genes leads to silencing in tissues distal to the transformation site and to enhancedsusceptibility to Phytophthorasojae. Plant Physiol 137:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Südel KM, Venzke K, Mielke H, Breitenbach U, Mundt C, Jaspers S, Koop U, Sauermann K, Knussman-Hartig E, Moll I, Gercken G, Young AR, Stäb F, Wenck H, Gallinat S. (2005) Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract. Photochemistry and photobiology, 81(3), 581–587. https://doi.org/10.1562/2004-06-16-RA-202

  • Sultana S, Haque F, Hamid K, Urmi KF, Roy S (2010) Antimicrobial, cytotoxic and antioxidant activity of methanolic extract of Glycyrrhiza glabra. Agric Biol J N Am 1(5):957–960. https://doi.org/10.5251/abjna.2010.1.5.957.960

    Article  Google Scholar 

  • Sun X, He C, Yang X, Guo L, Xue L (2015) Isoflavones and pterocarpans from Caragana changduensis. Biochem Syst Ecol 61:516–519

    Article  CAS  Google Scholar 

  • Takahashi R, Yamagishi N, Yoshikawa N (2012) A MYB transcription factor controls flower color in soybean. J Hered 104(1):149–153

    Article  PubMed  CAS  Google Scholar 

  • Takos AM, Rook F (2014) Plant-specialized metabolism and its genomic organization in biosynthetic gene clusters in Lotus japonicus. In: Tabata S, Stougaard J (eds) The Lotus japonicus Genome. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 149–162

    Google Scholar 

  • Taku K, Melby MK, Takebayashi J (2010) Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr 19:33–42

    CAS  PubMed  Google Scholar 

  • Thornton MJ, Taylor AH, Mulligan K, Al-Azzawi F, Lyon CC, O’Driscoll J, Messenger AG (2003a) The distributionof estrogen receptor beta is distinct to that of estrogen receptor alpha and the androgen receptor in human skin and the pilosebaceous unit. J Investig Dermatol Symp Proc 8:100–103

    Article  CAS  PubMed  Google Scholar 

  • Thornton MJ, Taylor AH, Mulligan K, Al-Azzawi F, Lyon CC, O’Driscoll J, Messenger AG (2003b) Oestrogen receptor beta is the predominant oestrogen receptor in human scalp skin. Exp Dermatol 12:181–190

    Article  CAS  PubMed  Google Scholar 

  • Toebes AHW, de Boer V, Verkleij JAC, Lingeman H, Ernst WHO (2005) Extraction of Isoflavone Malonylglucosides from Trifolium pratense L. J Agric Food Chem 53(12):4660–4666. https://doi.org/10.1021/jf047995f

    Article  CAS  PubMed  Google Scholar 

  • Tomar RS, Shrivastava V, Kaushik S (2014) In vitro efficacy of methanolic extract of Mimosa pudica against selected micro-organisms for its broad spectrum antimicrobial activity. Int J Curr Microbiol App Sci 3(4):780–784

    Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg) 7(6):581–591

    Article  CAS  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246. https://doi.org/10.3390/nu2121231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi P, Sharma SK, Kumar P (2018) Evaluation of antihyperlipidemic activity of ethanolic root extract of Glycyrrhiza glabra Linn. J Drug Deliv Ther 8(6-s):120–124

    Article  CAS  Google Scholar 

  • Vargas P, Farias GA, Nogales J, Prada H, Carvajal V, Baron M, Rivilla R, Martin M, Olmedilla A, Gallegos MT (2013) Plant flavonoids target Pseudomonas syringaepv. tomato DC3000flagella and type III secretion system. Environ Microbiol Rep 5:841–850

    Article  CAS  PubMed  Google Scholar 

  • Velasco P, Lema M, Francisco M, Soengas P, & Cartea ME (2013) In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. campestris. Molecules (Basel, Switzerland), 18(9), 11131–11143. https://doi.org/10.3390/molecules180911131

  • Velis H, Kasture A, Maxia A, Sanna C, Mohan M, Kasture S (2008) Antidopaminergic activity of isoflavone isolated from Butea Monosperma flowers. Pharmacology 1:159–168

    Google Scholar 

  • Velmurugan G, Parvathi Anand S (2017) Antifungal activity and quantitative phytochemical analysis of Phyllodium pulchellum L. Desv. – an important medicinal plant. Int J Curr Res Biosci Plant Biol 4(8):67–72

    Article  CAS  Google Scholar 

  • Visnevschi-Necrasov T, Barreira JCM, Bessada SMF, Pereira G, Nunes E, Oliveira MBPP (2016) Lotus conimbricensis Brot. as na alternative source of isoflavones

    Google Scholar 

  • Wanda K, Magloire GJ, Kretzschmar G, Njamen D, Fotsing MT, Yankep E, Vollmer G (2010) Modulation of some estrogen-responsive genes in the vena cava of ovariectomised Wistar rats by griffonianone C, an isoflavone derived from Millettia griffoniana Baill. (Fabaceae). Fitoterapia 81(8):1232–1238. https://doi.org/10.1016/j.fitote.2010.08.009

    Article  CAS  Google Scholar 

  • Watanabe S, Uesugi S, Kikuchi Y (2002) Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomed Pharmacother 56(6):302–312

    Article  CAS  PubMed  Google Scholar 

  • Widyarini S, Husband AJ, Reeve VE (2005) Protective effect of the isoflavonoid equol against hairless mouse skin carcinogenesis induced by UV radiation alone or with a chemical cocarcinogen. Photochem Photobiol 81:32–37

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported sub clades within the family. Amer J Bot 91:1846–1862

    Article  CAS  Google Scholar 

  • Xu L, Kumar A, Lamb K, Layton L (2006) Recovery of isoflavones from red clover flowers by a membrane-based process. Innovative Food Sci Emerg Technol 7(3):251–256

    Article  CAS  Google Scholar 

  • Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S (2003) Japan public health center-based prospective study on cancer cardiovascular diseases group soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst 95:906–913. [CrossRef] [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Spitznagel EL (2009) Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 89:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Yanishlieva-Maslarova N, Pokorny VJ, Yanishlieva N, Gordon MH (2001) Antioxidants in Food. In: Practical applications. Woodhead Publishing Limited, Cambridge, pp 22–70

    Google Scholar 

  • Yoshikawa K, Tanaka M, Arihara S, Pal BC, Roy SK, Matsumura E, Katayama S (2000) New oleanene tri-terpenoidsaponins from Madhucalongifolia. J Nat Prod 63(12):1679–1681

    Article  CAS  PubMed  Google Scholar 

  • Yu O, Jung W, Shi J (2000) Production of the isoflavonesgenistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7):753–763. https://doi.org/10.1016/S0031-9422(03)00345-5

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Kang HB, Li BL (2012) Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev 13:479–482

    Article  PubMed  Google Scholar 

  • Zhu YY, Zhou L, Jiao SC (2011) Relationship between soy food intake and breast cancer in China. Asian Pac J Cancer Prev 12:2837–2840

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuebuka Egbuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. et al. (2020). Health Benefits of Isoflavones Found Exclusively of Plants of the Fabaceae Family. In: Egbuna, C., Dable Tupas, G. (eds) Functional Foods and Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-42319-3_22

Download citation

Publish with us

Policies and ethics

Navigation