Preformulation Challenges: The Concept Behind the Selection, Design and Preparation of Nanoformulations

  • Chapter
  • First Online:
Nanoformulations in Human Health

Abstract

Nano-drug delivery carriers have fascinated researchers worldwide for the last two to three decades. The nanoformulations are preferred over conventional dosage forms as they provide improved drug solubility, bioavailability, drug stability under adverse external or physiological conditions, controlled drug release for prolonged action and target specificity using ligand binding and many more. Multiple essential aspects must be carefully studied and implemented for the development of efficient drug delivery vehicles. These aspects include rationale of nanoparticle preparation; use of polymeric or lipid nanoparticle; selection of polymer, lipid and excipients; method of preparation; screening of critical formulation or process parameters that affect the critical quality attributes; optimization of process to obtain the desired formulation characteristics; characterization of nanoparticles; strategy to improve the low entrapment efficiency and stability, etc. This chapter comprehensively summarizes all these aspects of nanoformulation development and proposes solutions for these challenges. Although a variety of nanoformulations have been described in literature, this chapter is restricted to discuss in detail the liposomes and polymeric and lipid nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal A, Gupta P, Khanna A, Sharma R, Chandrabanshi H, Gupta N, Patil U, Yadav S (2010) Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 65(3):188–193

    CAS  PubMed  Google Scholar 

  • Agrawal AK, Das M, Jain S (2012) In situ gel systems as ‘smart’carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 9(4):383–402

    CAS  PubMed  Google Scholar 

  • Agrawal AK, Harde H, Thanki K, Jain S (2013) Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 15(1):350–360

    PubMed  Google Scholar 

  • Agrawal AK, Urimi D, Harde H, Kushwah V, Jain S (2015a) Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv 5(127):105179–105193

    CAS  Google Scholar 

  • Agrawal AK, Urimi D, Jain S (2015b) Multifunctional polymeric nano-carriers in targeted drug delivery. In: Targeted drug delivery: concepts and design. Springer, Cham, pp 461–500

    Google Scholar 

  • Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S (2017a) Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine 13(5):1627–1636

    CAS  PubMed  Google Scholar 

  • Agrawal AK, Kumar K, Swarnakar NK, Kushwah V, Jain S (2017b) “Liquid crystalline nanoparticles”: rationally designed vehicle to improve stability and therapeutic efficacy of insulin following oral administration. Mol Pharm 14(6):1874–1882

    CAS  PubMed  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    PubMed  PubMed Central  Google Scholar 

  • Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga A-H, Munagala R, Gupta R (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101(1):12–21

    CAS  PubMed  Google Scholar 

  • Aqil F, Jeyabalan J, Agrawal AK, Kyakulaga A-H, Munagala R, Parker L, Gupta RC (2017a) Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct 8(11):4100–4107

    CAS  PubMed  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R (2017b) Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J 19(6):1691–1702

    CAS  PubMed  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Kyakulaga A-H, Wilcher SA, Gupta RC (2019) Milk exosomes-natural nanoparticles for siRNA delivery. Cancer Lett 449:186–195

    CAS  PubMed  Google Scholar 

  • Balguri SP, Adelli GR, Majumdar S (2016) Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm 109:224–235

    CAS  PubMed  Google Scholar 

  • Bhaskar K, Anbu J, Ravichandiran V, Venkateswarlu V, Rao YM (2009) Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis 8(1):6

    PubMed  PubMed Central  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    CAS  PubMed  Google Scholar 

  • Casadó A, Sagristá ML, Mora M (2014) Formulation and in vitro characterization of thermosensitive liposomes for the delivery of irinotecan. J Pharm Sci 103(10):3127–3138

    PubMed  Google Scholar 

  • Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16(7–8):354–360

    CAS  PubMed  Google Scholar 

  • Cheow WS, Chang MW, Hadinoto K (2010) Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 27(8):1597–1609

    CAS  PubMed  Google Scholar 

  • Choisnard L, Géze A, Bigan M, Putaux J-L, Wouessidjewe D (2005) Efficient size control of amphiphilic cyclodextrin nanoparticles through a statistical mixture design methodology. J Pharm Sci 8(3):593–600

    CAS  Google Scholar 

  • Choudhary H, Agrawal A, Malviya R, Yadav S, Jaliwala Y, Patil U (2010) Evaluation and optimization of preparative variables for controlled-release floating microspheres of levodopa/carbidopa. Pharmazie 65(3):194–198

    CAS  PubMed  Google Scholar 

  • Couvreur P, Kante B, Grislain L, Roland M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci 71(7):790–792

    CAS  PubMed  Google Scholar 

  • Das M, Jain R, Agrawal AK, Thanki K, Jain S (2014) Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio. Bioconjug Chem 25(3):501–509

    CAS  PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361

    CAS  PubMed  Google Scholar 

  • Dixit K, Athawale RB, Singh S (2015) Quality control of residual solvent content in polymeric microparticles. J Microencapsul 32(2):107–122

    CAS  PubMed  Google Scholar 

  • El-Shabouri M (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249(1–2):101–108

    CAS  PubMed  Google Scholar 

  • Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26(1):39–47

    CAS  PubMed  Google Scholar 

  • Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B: Biointerfaces 90:21–27

    CAS  PubMed  Google Scholar 

  • Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, Ali J (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15

    CAS  PubMed  Google Scholar 

  • Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19(35):6315–6329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gade S, Patel KK, Gupta C, Anjum MM, Deepika D, Agrawal AK, Singh S (2019) An ex vivo evaluation of moxifloxacin nanostructured lipid carrier enriched in situ gel for transcorneal permeation on goat cornea. J Pharm Sci 108(9):2905–2916

    CAS  PubMed  Google Scholar 

  • Gnanakan SRP, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4(9):1289–1301

    CAS  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16(10):1564–1569

    CAS  PubMed  Google Scholar 

  • Gupta H, Aqil M, Khar R, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 19(6):409–417

    CAS  PubMed  Google Scholar 

  • Hafner A, Lovrić J, Pepić I, Filipović-Grčić J (2011) Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J Microencapsul 28(8):807–815

    CAS  PubMed  Google Scholar 

  • Hao J, Wang F, Wang X, Zhang D, Bi Y, Gao Y, Zhao X, Zhang Q (2012) Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci 47(2):497–505

    CAS  PubMed  Google Scholar 

  • Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine 9(16):2511–2529

    CAS  PubMed  Google Scholar 

  • Harde H, Agrawal AK, Jain S (2015a) Tetanus toxoid-loaded layer-by-layer nanoassemblies for efficient systemic, mucosal, and cellular immunostimulatory response following oral administration. Drug Deliv Transl Res 5(5):498–510

    CAS  PubMed  Google Scholar 

  • Harde H, Agrawal AK, Jain S (2015b) Tetanus toxoids loaded glucomannosylated chitosan based nanohoming vaccine adjuvant with improved oral stability and immunostimulatory response. Pharm Res 32(1):122–134

    CAS  PubMed  Google Scholar 

  • Harde H, Agrawal AK, Jain S (2015c) Trilateral ‘3P’ mechanics of stabilized layersomes technology for efficient oral immunization. J Biomed Nanotechnol 11(3):363–381

    CAS  PubMed  Google Scholar 

  • Harde H, Agrawal AK, Katariya M, Kale D, Jain S (2015d) Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv 5(55):43917–43929

    CAS  Google Scholar 

  • Harde H, Siddhapura K, Agrawal AK, Jain S (2015e) Development of dual toxoid-loaded layersomes for complete immunostimulatory response following peroral administration. Nanomedicine 10(7):1077–1091

    CAS  PubMed  Google Scholar 

  • Harde H, Siddhapura K, Agrawal AK, Jain S (2015f) Divalent toxoids loaded stable chitosan–glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration. Int J Pharm 487(1–2):292–304

    CAS  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, Yasuda J, Obata K, Kikuchi H, Ishida T (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342(1–2):194–200

    CAS  PubMed  Google Scholar 

  • Hu J, Johnston KP, Williams RO III (2004) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30(3):233–245

    PubMed  Google Scholar 

  • Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, Jiang X (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61

    CAS  PubMed  Google Scholar 

  • Huang G, Zhang N, Bi X, Dou M (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355(1–2):314–320

    CAS  PubMed  Google Scholar 

  • Jain S, Patil SR, Swarnakar NK, Agrawal AK (2012) Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm 9(9):2626–2635

    CAS  PubMed  Google Scholar 

  • Jain S, Kumar S, Agrawal AK, Thanki K, Banerjee UC (2013a) Enhanced transfection efficiency and reduced cytotoxicity of novel lipid–polymer hybrid nanoplexes. Mol Pharm 10(6):2416–2425

    CAS  PubMed  Google Scholar 

  • Jain S, Sharma JM, Agrawal AK, Mahajan RR (2013b) Surface stabilized efavirenz nanoparticles for oral bioavailability enhancement. J Biomed Nanotechnol 9(11):1862–1874

    CAS  PubMed  Google Scholar 

  • Jain S, Harde H, Indulkar A, Agrawal AK (2014a) Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine 10(2):431–440

    CAS  PubMed  Google Scholar 

  • Jain S, Indulkar A, Harde H, Agrawal AK (2014b) Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol 10(6):932–947

    CAS  PubMed  Google Scholar 

  • Jain S, Jain R, Das M, Agrawal AK, Thanki K, Kushwah V (2014c) Combinatorial bio-conjugation of gemcitabine and curcumin enables dual drug delivery with synergistic anticancer efficacy and reduced toxicity. RSC Adv 4(55):29193–29201

    CAS  Google Scholar 

  • Jain S, Kumar S, Agrawal A, Thanki K, Banerjee U (2015a) Hyaluronic acid–PEI–cyclodextrin polyplexes: implications for in vitro and in vivo transfection efficiency and toxicity. RSC Adv 5(51):41144–41154

    CAS  Google Scholar 

  • Jain S, Spandana G, Agrawal AK, Kushwah V, Thanki K (2015b) Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharm 12(11):3871–3884

    CAS  PubMed  Google Scholar 

  • Jain S, Garg T, Kushwah V, Thanki K, Agrawal AK, Dora CP (2017) α-Tocopherol as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved bioavailability and prophylaxis of breast cancer. J Drug Target 25(6):554–565

    CAS  PubMed  Google Scholar 

  • Jana S, Manna S, Nayak AK, Sen KK, Basu SK (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B: Biointerfaces 114:36–44

    CAS  PubMed  Google Scholar 

  • Jenning V, Lippacher A, Gohla S (2002) Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 19(1):1–10

    CAS  PubMed  Google Scholar 

  • Kaler A, Mittal AK, Katariya M, Harde H, Agrawal AK, Jain S, Banerjee UC (2014) An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles. J Nanopart Res 16(9):2605

    Google Scholar 

  • Katiyar S, Pandit J, Mondal RS, Mishra AK, Chuttani K, Aqil M, Ali A, Sultana Y (2014) In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 102:117–124

    CAS  PubMed  Google Scholar 

  • Ke W, Zhao Y, Huang R, Jiang C, Pei Y (2008) Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J Pharm Sci 97(6):2208–2216

    CAS  PubMed  Google Scholar 

  • Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J (2008) Surfactant− polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm 5(5):795–807

    CAS  PubMed  Google Scholar 

  • Kisich K, Gelperina S, Higgins M, Wilson S, Shipulo E, Oganesyan E, Heifets L (2007) Encapsulation of moxifloxacin within poly (butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 345(1–2):154–162

    CAS  PubMed  Google Scholar 

  • Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11(1):195–206

    CAS  PubMed  Google Scholar 

  • Kushwah V, Agrawal AK, Dora CP, Mallinson D, Lamprou DA, Gupta RC, Jain S (2017) Novel gemcitabine conjugated albumin nanoparticles: a potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharm Res 34(11):2295–2311

    CAS  PubMed  Google Scholar 

  • Kushwah V, Jain DK, Agrawal AK, Jain S (2018a) Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes. Colloids Surf B: Biointerfaces 172:213–223

    CAS  PubMed  Google Scholar 

  • Kushwah V, Katiyar SS, Agrawal AK, Gupta RC, Jain S (2018b) Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine 14(5):1629–1641

    CAS  PubMed  Google Scholar 

  • Kushwah V, Katiyar SS, Agrawal AK, Saraf I, Singh IP, Lamprou DA, Gupta RC, Jain S (2018c) Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate. Int J Pharm 548(1):357–374

    CAS  PubMed  Google Scholar 

  • Kushwah V, Katiyar SS, Dora CP, Agrawal AK, Lamprou DA, Gupta RC, Jain S (2018d) Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomater 73:424–436

    CAS  PubMed  Google Scholar 

  • Lee M, Cho YW, Park JH, Chung H, Jeong SY, Choi K, Moon DH, Kim SY, Kim I-S, Kwon IC (2006) Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym Sci 284(5):506–512

    CAS  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    CAS  PubMed  Google Scholar 

  • Lince F, Marchisio DL, Barresi AA (2011) A comparative study for nanoparticle production with passive mixers via solvent-displacement: use of CFD models for optimization and design. Chem Eng Process Process Intensif 50(4):356–368

    CAS  Google Scholar 

  • Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29):7139–7150

    CAS  PubMed  Google Scholar 

  • Ling Y, Wei K, Zou F, Zhong S (2012) Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm 430(1–2):266–275

    CAS  PubMed  Google Scholar 

  • Lipinski C (2002) Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev 5(3):82–85

    Google Scholar 

  • Liu W, Hu M, Liu W, Xue C, Xu H, Yang X (2008) Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm 364(1):135–141

    CAS  PubMed  Google Scholar 

  • Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821

    CAS  PubMed  Google Scholar 

  • Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J Control Release 114(1):53–59

    CAS  PubMed  Google Scholar 

  • Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A (2013) Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine 9(4):492–503

    CAS  PubMed  Google Scholar 

  • Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20(10):1617–1624

    CAS  Google Scholar 

  • Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG, Park R-W, Kim I-S, Jeong SY, Kim K (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127(3):208–218

    CAS  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    PubMed  Google Scholar 

  • Munagala R, Aqil F, Jeyabalan J, Agrawal AK, Mudd AM, Kyakulaga AH, Singh IP, Vadhanam MV, Gupta RC (2017) Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett 393:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine 4(3):252–261

    CAS  PubMed  Google Scholar 

  • Naik A, Kalia YN, Guy RH, Fessi H (2004) Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21(10):1818–1825

    PubMed  Google Scholar 

  • Nair A, Khunt D, Misra M (2019) Application of quality by design for optimization of spray drying process used in drying of risperidone nanosuspension. Powder Technol 342:156–165

    CAS  Google Scholar 

  • Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed 43(46):6323–6327

    CAS  Google Scholar 

  • Nii T, Ishii F (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm 298(1):198–205

    CAS  PubMed  Google Scholar 

  • Parra A, Mallandrich M, Clares B, Egea MA, Espina M, García ML, Calpena AC (2015) Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: ocular anti-inflammatory applications. Colloids Surf B: Biointerfaces 136:935–943

    CAS  PubMed  Google Scholar 

  • Patel KK, Agrawal AK, Anjum MM, Tripathi M, Pandey N, Bhattacharya S, Tilak R, Singh S (2019a) DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl Nanosci 10:563. https://doi.org/10.1007/s13204-019-01129-8

    Article  CAS  Google Scholar 

  • Patel KK, Gade S, Anjum MM, Singh SK, Maiti P, Agrawal AK, Singh S (2019b) Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci 9(6):1383–1394

    CAS  Google Scholar 

  • Patel KK, Surekha DB, Tripathi M, Anjum MM, Muthu M, Tilak R, Agrawal AK, Singh S (2019c) Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: a study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol Pharm 16(9):3916–3925

    CAS  PubMed  Google Scholar 

  • Patel KK, Tripathi M, Pandey N, Agrawal AK, Gade S, Anjum MM, Tilak R, Singh S (2019d) Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int J Pharm 563:30–42

    CAS  PubMed  Google Scholar 

  • Potta SG, Minemi S, Nukala RK, Peinado C, Lamprou DA, Urquhart A, Douroumis D (2010) Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. J Biomed Nanotechnol 6(6):634–640

    CAS  PubMed  Google Scholar 

  • Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP (2016) Novel drug delivery system: an immense hope for diabetics. Drug Deliv 23(7):2371–2390

    CAS  PubMed  Google Scholar 

  • Reverchon E (1999) Supercritical antisolvent precipitation of micro-and nano-particles. J Supercrit Fluids 15(1):1–21

    CAS  Google Scholar 

  • Rosen J, Yoffe S, Meerasa A, Verma M, Gu F (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2:115

    Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    CAS  PubMed  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8(10):3054–3060

    CAS  PubMed  Google Scholar 

  • Schäfer-Korting M, Mehnert W, Korting H-C (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59(6):427–443

    PubMed  Google Scholar 

  • Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y (2012) Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci 109(28):11294–11299

    CAS  PubMed  Google Scholar 

  • Seymour L, Duncan R, Strohalm J, Kopeček J (1987) Effect of molecular weight (M w) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res 21(11):1341–1358

    CAS  PubMed  Google Scholar 

  • Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37(3–4):223–230

    CAS  PubMed  Google Scholar 

  • Sharma N, Madan P, Lin S (2016) Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci 11(3):404–416

    Google Scholar 

  • Shilpi D, Kushwah V, Agrawal AK, Jain S (2017) Improved stability and enhanced oral bioavailability of atorvastatin loaded stearic acid modified gelatin nanoparticles. Pharm Res 34(7):1505–1516

    CAS  PubMed  Google Scholar 

  • Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release 97(3):477–484

    CAS  PubMed  Google Scholar 

  • Singh S, Kushwah V, Agrawal AK, Jain S (2018) Insulin-and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine 13(5):521–537

    CAS  PubMed  Google Scholar 

  • Spataro G, Malecaze F, Turrin C-O, Soler V, Duhayon C, Elena P-P, Majoral J-P, Caminade A-M (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45(1):326–334

    CAS  PubMed  Google Scholar 

  • Sun YP, Meziani MJ, Pathak P, Qu L (2005) Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chem Eur J 11(5):1366–1373

    CAS  PubMed  Google Scholar 

  • Suthar AK, Solanki SS, Dhanwani RK (2011) Enhancement of dissolution of poorly water soluble raloxifene hydrochloride by preparing nanoparticles. J Adv Pharm Educ Res 2:189–194

    Google Scholar 

  • Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K (2011) Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis. Colloids Surf B: Biointerfaces 88(2):706–710

    CAS  PubMed  Google Scholar 

  • Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA (2011) Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 32(27):6606–6613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turk CTS, Oz UC, Serim TM, Hascicek C (2014) Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech 15(1):161–176

    CAS  PubMed  Google Scholar 

  • Uchechi O, Ogbonna JD, Attama AA (2014) Nanoparticles for dermal and transdermal drug delivery. In: Application of nanotechnology in drug delivery. IntechOpen, London, UK

    Google Scholar 

  • Urimi D, Agrawal AK, Kushwah V, Jain S (2019) Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech 20(3):131

    CAS  PubMed  Google Scholar 

  • Vandervoort J, Ludwig A (2002) Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int J Pharm 238(1–2):77–92

    CAS  PubMed  Google Scholar 

  • Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70(3):735–740

    CAS  PubMed  Google Scholar 

  • Wen H, Park K (2010) Oral controlled release formulation design and drug delivery. Theory to practice, pp 169–183, Wiley, USA

    Google Scholar 

  • Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV (2010) Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci 41(3–4):556–563

    CAS  PubMed  Google Scholar 

  • **e J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao M, McClements DJ, **ao H (2015) Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr Opin Food Sci 2:14–19

    Google Scholar 

  • Yoo HS, Oh JE, Lee KH, Park TG (1999) Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res 16(7):1114–1118

    CAS  PubMed  Google Scholar 

  • Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50(1–3):31–40

    CAS  PubMed  Google Scholar 

  • Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharm Ther 83(5):761–769

    CAS  Google Scholar 

  • Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y (2014) Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35(1):456–465

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, K.K., Agrawal, A.K., Singh, S. (2020). Preformulation Challenges: The Concept Behind the Selection, Design and Preparation of Nanoformulations. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_3

Download citation

Publish with us

Policies and ethics

Navigation