Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants and Devices

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Bacterial adhesion and biofilm formation on biomedical surfaces remain the annoying problems in global public health, causing severe infectious diseases and increasing health care costs. Moreover, the continued increase in the number of multidrug-resistant bacteria and their fast evolution induce a serious concern with the lack of development of new antimicrobials. These problems have initiated numerous research efforts to develop more effective antimicrobial surfaces through different engineering approaches to prohibit bacterial adhesion and subsequent biofilm formation. In this review, we summarize the engineering technologies for constructing antibacterial surfaces from the conventional to the cutting-edge strategies. Most of the traditional methods are based on the antifouling coatings and the release of toxic biocides from the chemically modified substrates. Antimicrobial nanoparticles can actively inhibit biofilm formation or other essential processes in the drug resistance mechanisms of bacteria. Thus, the combined use of bactericidal nanoparticles and antifouling polymers for functionalized organic–inorganic platforms has been investigated to enhance antibacterial performance. In recent years, unique surface topographies of antibacterial, natural surfaces have been discovered and studied with the increased understanding of the interaction between bacteria and substrates. We introduce various natural surfaces and artificial implantable biomaterials, which present the bactericidal surface topographies, along with their bactericidal mechanisms and efficiency. The use of biomimetic, nanotextured surfaces is a promising approach to overcome the current challenges for the treatment of multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsiwala A, Desai P, Patravale V (2014) Recent advances in micro/nanoscale biomedical implants. J Control Release 189:25–45. https://doi.org/10.1016/j.jconrel.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  2. Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33:637–652. https://doi.org/10.1016/j.tibtech.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368–4380. https://doi.org/10.1039/c3sm27705d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jang Y, Park S, Char K (2011) Functionalization of polymer multilayer thin films for novel biomedical applications. Kor J Chem Eng 28:1149–1160. https://doi.org/10.1007/s11814-010-0434-x

    Article  CAS  Google Scholar 

  5. Son H, Jang Y, Koo J, Lee JS, Theato P, Char K (2016) Penetration and exchange kinetics of primary alkyl amines applied to reactive poly(pentafluorophenyl acrylate) thin films. Polym J 48:487–495. https://doi.org/10.1038/pj.2016.6

    Article  CAS  Google Scholar 

  6. Yoo J, Birke A, Kim J, Jang Y, Song SY, Ryu S, Kim BS, Kim BG, Barz M, Char K (2018) Cooperative catechol-functionalized polypept(o)ide brushes and Ag nanoparticles for combination of protein resistance and antimicrobial activity on metal oxide surfaces. Biomacromolecules 19:1602–1613. https://doi.org/10.1021/acs.biomac.8b00135

    Article  CAS  PubMed  Google Scholar 

  7. **e Y, Tang C, Wang Z, Xu Y, Zhao W, Sun S, Zhao C (2017) Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J Mater Chem B 5:7186–7193. https://doi.org/10.1039/c7tb01516j

    Article  CAS  PubMed  Google Scholar 

  8. Lau KHA, Ren C, Park SH, Szleifer I, Messersmith PB (2012) An experimental-theoretical analysis of protein adsorption on peptidomimetic polymer brushes. Langmuir 28:2288–2298. https://doi.org/10.1021/la203905g

    Article  CAS  PubMed  Google Scholar 

  9. Rosu C, Jang Y, Jiang L, Champion J (2018) Nature-Inspired and “Water-Skating” Paper and Polyester Substrates Enabled by the Molecular Structure of Poly(γ-stearyl-α, l-glutamate) Homopolypeptide. Biomacromolecules 19:4617–4628. https://doi.org/10.1021/acs.biomac.8b01312

  10. Chen L, Zeng R, **ang L, Luo Z, Wang Y (2012) Polydopamine-graft-PEG antifouling coating for quantitative analysis of food proteins by CE. Anal Methods 4:2852–2859. https://doi.org/10.1039/c2ay25129a

    Article  CAS  Google Scholar 

  11. Zhang RN, Liu YN, He MR, Su YL, Zhao XT, Elimelech M, Jiang ZY (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45:5888–5924. https://doi.org/10.1039/c5cs00579e

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. https://doi.org/10.1002/adma.201001215

    Article  CAS  PubMed  Google Scholar 

  13. Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056. https://doi.org/10.1016/S0142-9612(01)00334-9

    Article  CAS  PubMed  Google Scholar 

  14. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721. https://doi.org/10.1021/ja00076a032

    Article  CAS  Google Scholar 

  15. Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955. https://doi.org/10.1021/la0484691

    Article  CAS  PubMed  Google Scholar 

  16. Lau KHA, Sileika TS, Park SH, Sousa AML, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2:1400225. https://doi.org/10.1002/Admi.201400225

    Article  PubMed  Google Scholar 

  17. Lee SJ, Heo DN, Lee HR, Lee D, Yu SJ, Park SA, Ko WK, Park SW, Im SG, Moon JH, Kwon IK (2015) Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis. J Mater Chem B 3:5161–5165. https://doi.org/10.1039/c5tb00611b

    Article  CAS  PubMed  Google Scholar 

  18. Chelmowski R, Koster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Woll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130:14952–14953. https://doi.org/10.1021/ja8065754

    Article  CAS  PubMed  Google Scholar 

  19. Le NCH, Gubala V, Gandhiraman RP, Daniels S, Williams DE (2011) Evaluation of different nonspecific binding blocking agents deposited inside poly(methyl methacrylate) microfluidic flow-cells. Langmuir 27:9043–9051. https://doi.org/10.1021/la2011502

    Article  CAS  PubMed  Google Scholar 

  20. Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668. https://doi.org/10.1021/bm800185h

    Article  CAS  PubMed  Google Scholar 

  21. Nystrom L, Stromstedt AA, Schmidtchen A, Malmsten M (2018) Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules 19:3456–3466. https://doi.org/10.1021/acs.biomac.8b00776

    Article  CAS  PubMed  Google Scholar 

  22. Kaur R, Liu S (2016) Antibacterial surface design—contact kill. Prog Surf Sci 91:136–153. https://doi.org/10.1016/j.progsurf.2016.09.001

    Article  CAS  Google Scholar 

  23. Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98:5981–5985. https://doi.org/10.1073/pnas.111143098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471. https://doi.org/10.1002/bit.10299

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Vermerris W (2016) Antimicrobial nanomaterials derived from natural products—a review. Materials (Basel) 9:255. https://doi.org/10.3390/ma9040255

    Article  CAS  Google Scholar 

  26. Correia VG, Ferraria AM, Pinho MG, Aguiar-Ricardo A (2015) Antimicrobial contact-active oligo(2-oxazoline)s-grafted surfaces for fast water disinfection at the point-of-use. Biomacromolecules 16:3904–3915. https://doi.org/10.1021/acs.biomac.5b01243

    Article  CAS  PubMed  Google Scholar 

  27. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  PubMed  Google Scholar 

  28. Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294. https://doi.org/10.1021/bm0604395

    Article  CAS  PubMed  Google Scholar 

  29. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32:1711–1726. https://doi.org/10.1016/j.msec.2012.05.009

    Article  CAS  Google Scholar 

  30. Torres-Giner S, Ocio MJ, Lagaron JM (2008) Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 8:303–314. https://doi.org/10.1002/elsc.200700066

    Article  CAS  Google Scholar 

  31. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Aki Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. https://doi.org/10.1021/am400338n

    Article  CAS  PubMed  Google Scholar 

  32. Roemhild K, Wiegand C, Hipler U, Heinze T (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771. https://doi.org/10.1002/marc.201300588

    Article  CAS  PubMed  Google Scholar 

  33. Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99. https://doi.org/10.1021/bm700849j

    Article  CAS  PubMed  Google Scholar 

  34. Heunis T, Bshena O, Klumperman B, Dicks L (2011) Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Int J Mol Sci 12:2158–2173. https://doi.org/10.3390/ijms12042158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Viana JFC, Carrijo J, Freitas CG, Paul A, Alcaraz J, Lacorte CC, Migliolo L, Andrade CA, Falcão R, Santos NC, Gonçalves S, Otero-González AJ, Khademhosseini A, Dias SC, Franco OL (2015) Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale 7:6238–6246. https://doi.org/10.1039/c5nr00767d

    Article  CAS  PubMed  Google Scholar 

  36. Gatti JW, Smithgall MC, Paranjape SM, Rolfes RJ, Paranjape M (2013) Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices 15:887–893. https://doi.org/10.1007/s10544-013-9777-5

    Article  CAS  PubMed  Google Scholar 

  37. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol 9:1441. https://doi.org/10.3389/fmicb.2018.01441

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Hu C, Shoa L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  39. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354. https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  40. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976. https://doi.org/10.1021/acsami.6b00161

    Article  CAS  PubMed  Google Scholar 

  41. Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959. https://doi.org/10.1590/S0103-50532010000600002

    Article  CAS  Google Scholar 

  42. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95. https://doi.org/10.1016/j.ijmm.2014.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225. https://doi.org/10.2147/Ijn.S132163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slavin YN, Asnis J, Hafeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:56. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  45. Cui Y, Zhao YY, Tian Y, Zhang W, Lu XY, Jiang XY (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  46. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6:71. https://doi.org/10.3390/nano6040071

    Article  CAS  PubMed Central  Google Scholar 

  47. Rastogi L, Kora AJ, Arunachalam J (2012) Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Materials Science and Engineering: C 32(6):1571–1577. https://doi.org/10.1016/J.MSEC.2012.04.044

  48. Roshmi T, Soumya KR, Jyothis M, Radhakrishnan EK (2015) Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bulletin 48(1–2):63–71. https://doi.org/10.1007/s13404-015-0162-4

  49. Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules 9:2805–2811. https://doi.org/10.1021/acs.biomac.8b00399

    Article  CAS  Google Scholar 

  50. Qayyum S, Oves M, Khan AU (2017) Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One 12:e0181363. https://doi.org/10.1371/journal.pone.0181363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jankauskaite V, Lazauskas A, Griskonis E, Lisauskaite A, Zukiene K (2017) UV-curable aliphatic silicone acrylate organic-inorganic hybrid coatings with antibacterial activity. Molecules 22:964. https://doi.org/10.3390/molecules22060964

    Article  CAS  PubMed Central  Google Scholar 

  52. Xu DQ, Su YL, Zhao LL, Meng FC, Liu C, Guan YY, Zhang JY, Luo JB (2017) Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J Biomed Mater Res Pt A 105:531–538. https://doi.org/10.1002/jbm.a.35929

    Article  CAS  Google Scholar 

  53. Prasannaraj G, Venkatachalam P (2017) Enhanced antibacterial, anti-biofilm and antioxidant (ROS) activities of biomolecules engineered silver nanoparticles against clinically isolated gram positive and gram negative microbial pathogens. J Clust Sci 28:645–664. https://doi.org/10.1007/s10876-017-1160-x

    Article  CAS  Google Scholar 

  54. Gupta K, Barua S, Hazarika SN, Manhar AK, Nath D, Karak N, Namsa ND, Mukhopadhyay R, Kalia VC, Mandal M (2014) Green silver nanoparticles: enhanced antimicrobial and antibiofilm activity with effects on DNA replication and cell cytotoxicity. RSC Adv 4:52845–52855. https://doi.org/10.1039/c4ra08791g

    Article  CAS  Google Scholar 

  55. Wooh S, Butt HJ (2017) A photocatalytically active lubricant-impregnated surface. Angew Chem Int Ed 56:4965–4969. https://doi.org/10.1002/anie.201611277

    Article  CAS  Google Scholar 

  56. Shankar S, Teng XN, Li GB, Rhim JW (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001

    Article  CAS  Google Scholar 

  57. Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W (2007) The dream of staying clean: lotus and biomimetic surfaces. Bioinspir Biomim 2:S126–S134. https://doi.org/10.1088/1748-3182/2/4/S02

    Article  PubMed  Google Scholar 

  58. Watson GS, Green DW, Schwarzkopf L, Li X, Cribb BW, Myhra S, Watson JA (2015) A gecko skin micro/nano structure—a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater 21:109–122. https://doi.org/10.1016/j.actbio.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  59. Bixler GD, Bhushan B (2013) Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Adv Funct Mater 23:4507–4528. https://doi.org/10.1002/adfm.201203683

    Article  CAS  Google Scholar 

  60. Watson GS, Cribb BW, Watson JA (2010) How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4:129–136. https://doi.org/10.1021/nn900869b

    Article  CAS  PubMed  Google Scholar 

  61. Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77:213–225. https://doi.org/10.1111/j.1463-6395.1996.tb01265.x

    Article  Google Scholar 

  62. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677. https://doi.org/10.1006/ANBO.1997.0400

    Article  Google Scholar 

  63. Li X, Cheung GS, Watson GS, Watson JA, Lin S, Schwarzkopf L, Green DW (2016) The nanotipped hairs of gecko skin and biotemplated replicas impair and/or kill pathogenic bacteria with high efficiency. Nanoscale 8:18860–18869. https://doi.org/10.1039/c6nr05046h

    Article  CAS  PubMed  Google Scholar 

  64. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small 8:2489–2494. https://doi.org/10.1002/smll.201200528

    Article  CAS  PubMed  Google Scholar 

  65. Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013) Bactericidal activity of black silicon. Nat Commun 4:2838. https://doi.org/10.1038/ncomms3838

    Article  CAS  PubMed  Google Scholar 

  66. Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnol 15:64. https://doi.org/10.1186/s12951-017-0306-1

    Article  CAS  Google Scholar 

  67. Ma J, Sun Y, Gleichauf K, Lou J, Li Q (2011) Nanostructure on Taro Leaves Resists Fouling by Colloids and Bacteria under Submerged Conditions. Langmuir 27 (16):10035–10040

    Google Scholar 

  68. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172:1103–1112. https://doi.org/10.1016/j.plantsci.2007.03.005

    Article  CAS  Google Scholar 

  69. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860. https://doi.org/10.1002/adma.200290020

    Article  CAS  Google Scholar 

  70. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  71. Dundar Arisoy F, Kolewe KW, Homyak B, Kurtz IS, Schiffman JD, Watkins JJ (2018) Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl Mater Interfaces 10:20055–20063. https://doi.org/10.1021/acsami.8b05066

    Article  CAS  PubMed  Google Scholar 

  72. Bixler GD, Bhushan B (2015) Rice and butterfly wing effect inspired low drag and antifouling surfaces: a review. Crit Rev Solid State Mater Sci 40:1–37. https://doi.org/10.1080/10408436.2014.917368

    Article  CAS  Google Scholar 

  73. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8:11271–11284. https://doi.org/10.1039/c2sm26655e

    Article  CAS  Google Scholar 

  74. Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104:835–840. https://doi.org/10.1016/j.bpj.2012.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol 97:9257–9262. https://doi.org/10.1007/s00253-012-4628-5

    Article  CAS  PubMed  Google Scholar 

  76. Kelleher SM, Habimana O, Lawler J, O’reilly B, Daniels S, Casey E, Cowley A (2016) Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces 8:14966–14974. https://doi.org/10.1021/acsami.5b08309

    Article  CAS  PubMed  Google Scholar 

  77. Ivanova EP, Nguyen SH, Webb HK, Hasan J, Truong VK, Lamb RN, Duan X, Tobin MJ, Mahon PJ, Crawford RJ (2013) Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle. PLoS One 8:e67893. https://doi.org/10.1371/journal.pone.0067893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Selvakumar R, Karuppanan KK, Pezhinkattil R (2012) Analysis on surface nanostructures present in hindwing of dragon fly (Sympetrum vulgatum) using atomic force microscopy. Micron 43:1299–1303. https://doi.org/10.1016/J.MICRON.2011.10.017

    Article  PubMed  Google Scholar 

  79. Mainwaring DE, Nguyen SH, Webb H, Jakubov T, Tobin M, Lamb RN, Wu AHF, Marchant R, Crawford RJ, Ivanova EP (2016) The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. Nanoscale 8:6527–6534. https://doi.org/10.1039/c5nr08542j

    Article  CAS  PubMed  Google Scholar 

  80. Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A (2017) Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl Mater Interfaces 9:6746–6760. https://doi.org/10.1021/acsami.6b13666

    Article  CAS  PubMed  Google Scholar 

  81. Linklater DP, Juodkazis S, Rubanov S, Ivanova EP (2017) Comment on “Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli”. ACS Appl Mater Interfaces 9:29387–29393. https://doi.org/10.1021/acsami.7b05707

    Article  CAS  PubMed  Google Scholar 

  82. Watson GS, Cribb BW, Schwarzkopf L, Watson JA (2015) Contaminant adhesion (aerial/ground biofouling) on the skin of a gecko. J R Soc Interface 12:20150318. https://doi.org/10.1098/rsif.2015.0318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hayes MJ, Levine TP, Wilson RH (2016) Identification of nanopillars on the cuticle of the aquatic larvae of the drone fly (diptera: Syrphidae). J Insect Sci 16:1–7. https://doi.org/10.1093/jisesa/iew019

    Article  CAS  Google Scholar 

  84. Kayes MI, Galante AJ, Stella NA, Haghanifar S, Shanks RMQ, Leu PW (2018) Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. React Funct Polym 128:40–46. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2018.04.013

    Article  CAS  Google Scholar 

  85. Wolfe DB, Love JC, Whitesides GM (2004) Nanostructures replicated by polymer molding. Marcel Dekker, New York

    Google Scholar 

  86. Jafari Nodoushan E, Ebrahimi NG, Ayazi M (2017) An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing. Appl Surf Sci 423:1054–1061. https://doi.org/10.1016/J.APSUSC.2017.06.193

    Article  CAS  Google Scholar 

  87. Munther M, Palma T, Angeron IA, Salari S, Ghassemi H, Vasefi M, Beheshti A, Davami K (2018) Microfabricated biomimetic placoid scale-inspired surfaces for antifouling applications. Appl Surf Sci 453:166–172. https://doi.org/10.1016/j.apsusc.2018.05.030

    Article  CAS  Google Scholar 

  88. Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies—correlating wettability with cell attachment. Biofouling 22:11–21. https://doi.org/10.1080/08927010500484854

    Article  CAS  PubMed  Google Scholar 

  89. Liu W, Liu X, Fangteng J, Wang S, Fang L, Shen H, **ang S, Sun H, Yang B (2014) Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale 6:13845–13853. https://doi.org/10.1039/c4nr04471a

    Article  CAS  PubMed  Google Scholar 

  90. ** L, Guo W, Xue P, Gao H, Zhao M, Zheng C, Zhang Y, Han D (2015) Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures. Nanotechnology 26:055702. https://doi.org/10.1088/0957-4484/26/5/055702

    Article  CAS  PubMed  Google Scholar 

  91. Izquierdo-Barba I, García-Martín JM, Álvarez R, Palmero A, Esteban J, Pérez-Jorge C, Arcos D, Vallet-Regí M (2015) Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomater 15:20–28. https://doi.org/10.1016/J.ACTBIO.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  92. Lüdecke C, Roth M, Yu W, Horn U, Bossert J, Jandt KD (2016) Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf B Biointerfaces 145:617–625. https://doi.org/10.1016/J.COLSURFB.2016.05.049

    Article  PubMed  Google Scholar 

  93. Wu S, Zhang B, Liu Y, Suo X, Li H (2018) Influence of surface topography on bacterial adhesion: a review (review). Biointerphases 13:060801. https://doi.org/10.1116/1.5054057

    Article  CAS  PubMed  Google Scholar 

  94. Desrousseaux C, Sautou V, Descamps S, Traoré O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85:87–93. https://doi.org/10.1016/J.JHIN.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  95. DEWIDAR MM, KHALIL KA, LIM JK (2007) Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous Met Soc Chin 17:468–473. https://doi.org/10.1016/S1003-6326(07)60117-4

    Article  Google Scholar 

  96. Bagherifard S, Hickey DJ, de Luca AC, Malheiro VN, Markaki AE, Guagliano M, Webster TJ (2015) The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 73:185–197. https://doi.org/10.1016/j.biomaterials.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  97. Sundararaj K, Bangaru M, Mohan B (2017) In vitro biocompatibility study on stainless steel 316L after nano finishing. ASME Paper No. IMECE2017-72606: V003T04A064. https://doi.org/10.1115/IMECE2017-72606

  98. Jang Y, Choi WT, Johnson CT, García AJ, Singh PM, Breedveld V, Hess DW, Champion JA (2018) Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching. ACS Biomater Sci Eng 4:90–97. https://doi.org/10.1021/acsbiomaterials.7b00544

    Article  CAS  PubMed  Google Scholar 

  99. Lin Y, Gallucci GO, Buser D, Bosshardt D, Belser UC, Yelick PC (2011) Bioengineered periodontal tissue formed on titanium dental implants. J Dent Res 90:251–256. https://doi.org/10.1177/0022034510384872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Michelle Grandin H, Berner S, Dard M (2012) A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials (Basel) 5:1348–1360. https://doi.org/10.3390/ma5081348

    Article  CAS  PubMed Central  Google Scholar 

  101. Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822. https://doi.org/10.1016/j.biomaterials.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  102. Sengstock C, Lopian M, Motemani Y, Borgmann A, Khare C, Buenconsejo PJS, Schildhauer TA, Ludwig A, Köller M (2014) Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition. Nanotechnology 25:195101. https://doi.org/10.1088/0957-4484/25/19/195101

    Article  CAS  PubMed  Google Scholar 

  103. Bhadra CM, Khanh Truong V, Pham VTH, Al Kobaisi M, Seniutinas G, Wang JY, Juodkazis S, Crawford RJ, Ivanova EP (2015) Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep 5:16817. https://doi.org/10.1038/srep16817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasan J, Jain S, Chatterjee K (2017) Nanoscale topography on black titanium imparts multi-biofunctional properties for orthopedic applications. Sci Rep 7:41118. https://doi.org/10.1038/srep41118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsimbouri PM, Fisher L, Holloway N, Sjostrom T, Nobbs AH, Meek RMD, Su B, Dalby MJ (2016) Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates. Sci Rep 6:36875. https://doi.org/10.1038/srep36857

    Article  CAS  Google Scholar 

  106. Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, Van Der Mei HC, Choi CH (2015) Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl Mater Interfaces 7:20304–20313. https://doi.org/10.1021/acsami.5b05947

    Article  CAS  PubMed  Google Scholar 

  107. Sjöström T, Nobbs AH, Su B (2016) Bactericidal nanospike surfaces via thermal oxidation of Ti alloy substrates. Mater Lett 167:22–26. https://doi.org/10.1016/j.matlet.2015.12.140

    Article  CAS  Google Scholar 

  108. Wang X, Bhadra CM, Yen Dang TH, Buividas R, Wang J, Crawford RJ, Ivanova EP, Juodkazis S (2016) A bactericidal microfluidic device constructed using nano-textured black silicon. RSC Adv 6:26300–26306. https://doi.org/10.1039/c6ra03864f

    Article  CAS  Google Scholar 

  109. Pham VTH, Truong VK, Orlowska A, Ghanaati S, Barbeck M, Booms P, Fulcher AJ, Bhadra CM, Buividas R, Baulin V, James Kirkpatrick C, Doran P, Mainwaring DE, Juodkazis S, Crawford RJ, Ivanova EP (2016) Race for the surface: eukaryotic cells can win. ACS Appl Mater Interfaces 8:22025–22031. https://doi.org/10.1021/acsami.6b06415

    Article  CAS  PubMed  Google Scholar 

  110. Li X (2015) Bactericidal mechanism of nanopatterned surfaces. Phys Chem Chem Phys 18:1311–1316. https://doi.org/10.1039/c5cp05646b

    Article  Google Scholar 

  111. Xue F, Liu J, Guo L, Zhang L, Li Q (2015) Theoretical study on the bactericidal nature of nanopatterned surfaces. J Theor Biol 385:1–7. https://doi.org/10.1016/j.jtbi.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  112. Nowlin K, Boseman A, Covell A, LaJeunesse D (2014) Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces. J R Soc Interface 12:20140999. https://doi.org/10.1098/rsif.2014.0999

    Article  CAS  Google Scholar 

  113. Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF (2015) Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:021010. https://doi.org/10.1116/1.4922157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A, Noirot P, Laible PD (2018) Tuning antimicrobial properties of biomimetic nanopatterned surfaces. Nanoscale 10:6639–6650. https://doi.org/10.1039/c8nr00439k

    Article  CAS  PubMed  Google Scholar 

  115. Lin N, Berton P, Moraes C, Rogers RD, Tufenkji N (2018) Nanodarts, nanoblades, and nanospikes: mechano-bactericidal nanostructures and where to find them. Adv Colloid Interface Sci 252:55–68. https://doi.org/10.1016/j.cis.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  116. Elbourne A, Crawford RJ, Ivanova EP (2017) Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci 508:603–616. https://doi.org/10.1016/j.jcis.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  117. Feng G, Cheng Y, Wang SY, Hsu LC, Feliz Y, Borca-Tasciuc DA, Worobo RW, Moraru CI (2014) Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling 30:1253–1268. https://doi.org/10.1080/08927014.2014.976561

    Article  PubMed  Google Scholar 

  118. Kim S, Jung UT, Kim SK, Lee JH, Choi HS, Kim CS, Jeong MY (2015) Nanostructured multifunctional surface with antireflective and antimicrobial characteristics. ACS Appl Mater Interfaces 7:326–331. https://doi.org/10.1021/am506254r

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Dr. Jang’s startup funds provided from Department of Chemical Engineering and Herbert Wertheim College of Engineering at the University of Florida. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeongseon Jang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, R., Yoo, J., Jang, Y. (2020). Engineering Approaches to Create Antibacterial Surfaces on Biomedical Implants and Devices. In: Li, B., Moriarty, T., Webster, T., **ng, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_14

Download citation

Publish with us

Policies and ethics

Navigation