Surface Waves

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Surface waves are elastic waves which propagate along the surface of the earth and whose energy decays exponentially with depth.

Surface waves contain most of the long period energy (periods greater than 20 s) generated by earthquakes and recorded at teleseismic distances. Most prominent on records of moderate (M ≥ 5.5) earthquakes are the fundamental mode wave trains that have propagated along the direct great circle path between the epicenter and the station. The dispersive and attenuative properties of these wave trains have been used extensively, since the 1950s, to infer crust and upper mantle structure at the regional scale. For earthquakes of magnitude 7 or larger, successive, earth-circling surface wave trains can be followed for many hours (Fig. 1) and are either analyzed individually or, at the longest periods (T > 250 s), they are combined over time lengths of tens of hours or days to produce a spectrum of Earth’s free oscillations (see “Free Oscillations of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aki K, Richards PG (1980) Quantitative Seismology. In: Theory and methods. W.H. Freeman, San Francisco

    Google Scholar 

  • Anderson DL (1961) Elastic wave propagation in layered anisotropic media. J Geophys Res 66:2953–2963

    Google Scholar 

  • Ardhuin F, Gualteri L, Stutzmann E (2015) How ocean waves rock the earth: two mechanisms explain microseisms with periods 3 to 300 s. Geophys Res Lett 42:765–772

    Google Scholar 

  • Backus G, Gilbert F (1968) The resolving power of gross earth data. Geophys J R Astron Soc 16:169–2050

    Google Scholar 

  • Backus G, Mulcahy M (1976) Moment tensors and other phenomenological descriptions of seismic sources I- continuous displacements. Geophys J R Astron Soc 46:341–371

    Google Scholar 

  • Beghein C, Yuan K, Schmerr N, **ng Z (2014) Changes in seismic anisotropy shade light on the nature of the Gutenberg discontinuity. Science 343:1237–1240

    Google Scholar 

  • Bolt BA (1976) Nuclear explosions and earthquakes. W. H. Freeman, USA

    Google Scholar 

  • Boschi L, Becker TW, Soldati G, Dziewonski AM (2006) On the relevance of Born theory in global seismic tomography. Geophys Res Lett 33:L06302. https://doi.org/10.1029/2005GL025063

    Article  Google Scholar 

  • Bostock MG, Kennett BLN (1992) Multiple scattering of surface waves from discrete obstacles. Geophys J Int 108:52–70

    Google Scholar 

  • Bozdag E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill J, Podhorszki N, Pugmire D (2017) Global adjoint tomography: a first generation model. Geophys J Int 207:1739–1766

    Google Scholar 

  • Burgos G, Montagner J-P, Beucler E, Capdeville Y, Mocquet A, Drilleau M (2014) Oceanic lithosphere-asthenosphere boundary from surface wave dispersion data. J Geophys Res Solid Earth 119:1079–1093

    Google Scholar 

  • Capon J (1970) Analysis of Rayleigh-wave multipath propagation at LASA. Bull Seismol Soc Am 60:1701–1731

    Google Scholar 

  • Cara M (1978) Regional variations of higher Rayleigh-mode phase velocities: a spatial filtering method. Geophys J R Astron Soc 54:439–460

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Dziewonski AM, Bloch S, Landisman M (1969) A new technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444

    Google Scholar 

  • Dziewonski AM, Chou AT, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852

    Google Scholar 

  • Ekström G (2017) Short-period surface-wave phase velocities across the conterminous United States Phys. Earth Planet. Inter 270:168–175

    Google Scholar 

  • Ekström G, Tromp J, Larson EWF(1997) Measurements and global models of surface wave propagation. J Geophys Res 102:8137–8157

    Google Scholar 

  • Ewing WM, Jardetsky WS, Press F (1957) Elastic waves in layered media. McGraw Hill, New York

    Google Scholar 

  • Fichtner A, Kennett B, Igel H, Bunge H-P (2010) Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet Sci Lett 290:270–280

    Google Scholar 

  • Forsyth DW (1975) The early structural evolution and anisotropy of the oceanic upper mantle. Geophys J R Astron Soc 43:103–162

    Google Scholar 

  • French S, Romanowicz B (2014) Whole-mantle radially anisotropic shear-velocity structure from spectral-element waveform tomography. Geophys J Int 199:1303–1327

    Google Scholar 

  • French SW, Lekic V, Romanowicz B (2013) Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342:227–230

    Google Scholar 

  • Friederich W, Wielandt E, Stange S (1993) Multiple forward scattering of surface waves: comparison with an exact solution and Born single-scattering methods. Geophys J Int 112:264–275

    Google Scholar 

  • Gung YC, Panning M, Romanowicz B (2003) Anisotropy and thickness of the lithosphere. Nature 422:707–711

    Google Scholar 

  • Haskell B (1964) Radiation pattern of surface waves from point sources un a multi-layered medium. Bull Seismol Soc Am 54:377

    Google Scholar 

  • Kennett BLN (1972) Seismic waves in laterally heterogeneous media. Geophys J R Astron Soc 27:301–325

    Google Scholar 

  • Kennett BLN (1984) Guided-wave propagation in laterally varying media – I. Theoretical development. Geophys J R astr Soc 79:235–255

    Google Scholar 

  • Knopoff L (1972) Observation and inversion of surface-wave dispersion. Tectonophysics 13:497–519

    Google Scholar 

  • Kobayashi N, Nishida K (1998) Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395:357–360

    Google Scholar 

  • Komatitsch D, Vilotte J-P (1998) The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368–392

    Google Scholar 

  • Kovach RL, Anderson DL (1964) Higher mode surface waves and their bearing on the structure of the Earth’s mantle. Bull Seismol Soc Am 54:161–182

    Google Scholar 

  • Lander AV (1989) Frequency-time analysis. In: Keilis-Borok VI (ed) Seismic surface waves in a laterally inhomogeneous earth. Kluwer Academic, Dordrecht, pp 153–163

    Google Scholar 

  • Lerner-Lam A, Jordan TH (1983) Earth structure from fundamental and higher-mode waveform analysis. Geophys J R Astron Soc 75:759–797

    Google Scholar 

  • Longuet-Higgins M (1950) A theory of the origin of microseisms. Philos Trans R Soc Lond 243:1–35

    Google Scholar 

  • Ma Z, Masters G, Mancinelli N (2016) Two-dimensional global Rayleigh wave attenuation model by accounting for finite-frequency focusing and defocusing effect. Geophys J Int 204:631–649

    Google Scholar 

  • Maupin V, Park J (2015) Theory and observations – wave propagation in anisotropic media. In: Romanowicz B, Dziewonski AM (eds) Treatise on geophysics, vol 1. Elsevier, Oxford, pp 277–305

    Google Scholar 

  • Montagner JP (2015) Upper mantle structure: global isotropic and anisotropic elastic tomography. In: Romanowicz B, Dziewonski AM (eds) Treatise on geophysics, vol 1. Elsevier, Oxford, pp 613–639

    Google Scholar 

  • Montagner JP, Jobert N (1983) Variation with age of the deep structure of the Pacific Ocean inferred from very long-period Rayleigh wave dispersion. Geophys Res Lett 10:273–276

    Google Scholar 

  • Montagner JP, Jobert N (1988) Vectorial tomography II. Application to the Indian Ocean. Geophys J Int 94:309–344

    Google Scholar 

  • Montagner JP, Nataf HC (1988) Vectorial tomography – I. Theory. Geophys J Int 94:295–307

    Google Scholar 

  • Montagner JP, Tanimoto T (1991) Global upper mantle tomography of seismic velocities and anisotropy. J Geophys Res 96(20):20337–20351

    Google Scholar 

  • Nishida K, Kobayashi N, Fukao Y (2002) Origin of Earth’s ground noise from 2 to 20 mHz. Geophys Res Lett 29:1413. https://doi.org/10.1029/2001GL013862

    Article  Google Scholar 

  • Nolet G (1975) Higher-Rayleigh modes in western Europe. Geophys Res Lett 2:60–62

    Google Scholar 

  • Nolet G (1990) Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. J Geophys Res 95:8499–8512

    Google Scholar 

  • Rhie J, Romanowicz B (2004) Excitation of Earth’s free oscillations by atmosphere-ocean-seafloor coupling. Nature 431:552–555

    Google Scholar 

  • Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184:1223–1236

    Google Scholar 

  • Romanowicz B (2002) Inversion of surface waves: a review. In: Lee WHK (ed) Handbook of earthquake and engineering seismology, part A. IASPEI, Acad. Press, NY, pp 149–174

    Google Scholar 

  • Romanowicz B, Mitchell BJ (2015) Q in the earth from crust to core. In: Romanowicz B, Dziewonski AM (eds) Treatise of geophysics, vol 1. Elsevier, Oxford, pp 789–827

    Google Scholar 

  • Romanowicz B, Panning M, Gung Y, Capdeville Y (2008) On the computation of long period seismograms in a 3D earth using normal mode based approximations. Geophys J Int 175:520–536

    Google Scholar 

  • Saito M (1967) Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth. J Geophys Res 72:3689

    Google Scholar 

  • Schaeffer AJ, Lebedev S ( 2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194(1):417–449

    Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface wave tomography from ambient seismic noise. Science 307:1615–1618

    Google Scholar 

  • Smith ML, Dahlen FA (1973) The azimuthal dependence of love and rayleigh wave propagation in a slightly anisotropic medium. J Geophys Res 78:3321–3333

    Google Scholar 

  • Snieder R (1988) Large-scale waveform inversions of surface waves for lateral heterogeneity, 1. Theory and numerical examples. J Geophys Res 93:12055–12065

    Google Scholar 

  • Tanimoto T, Anderson DL (1985) Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250s. J Geophys Res 90:1842–1858

    Google Scholar 

  • Tape C, Liu J, Maggi A, Tromp J (2010) Seismic tomography of the Southern California crust based on the spectral-element and adjoint methods. Geophys J Int 180:433–462

    Google Scholar 

  • Thurber C, Ritsema J (2015) Seismic tomography and inverse methods. In: Romanowicz B, Dziewonski AM (eds) Treatise on geophysics, vol 1. Elsevier, Oxford, pp 307–337

    Google Scholar 

  • Toksöz MN, Anderson DL (1966) Phase velocities of long period surface waves and structure of the upper mantle, 1, Great circle Love and Rayleigh wave data. J Geophys Res 71:1649–1658

    Google Scholar 

  • Trampert J, van Heijst HJ (2002) Global azimuthal anisotropy in the transition zone. Science 296:1297–1299

    Google Scholar 

  • Tsai YB, Aki K (1971) Amplitude spectra of surface waves from small earthquakes and underground nuclear explosions. J Geophys Res 75:5729

    Google Scholar 

  • van Heist H, Woodhouse J (1997) Measuring surface-wave overtone phase velocities using a mode-branch strip** technique. Geophys J Int 131:209–230

    Google Scholar 

  • Woodhouse JH (1974) Surface waves in laterally varying structure. Geophys J Roy Astron Soc 37:461–490

    Google Scholar 

  • Woodhouse JH (1988) The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the earth and the sun. In: Doornbos DJ (ed) Seismological algorithms. Academic, San Diego, pp 321–370

    Google Scholar 

  • Woodhouse JH, Dziewonski AM (1984) Map** the upper mantle: three dimensional modelling of the earth structure by inversion of seismic waveforms. J Geophys Res 89:5953–5986

    Google Scholar 

  • Yang Y, Forsyth DW (2006) Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys J Int 166:1148–1160

    Google Scholar 

  • Yu Y, Park J (1994) Hunting for azimuthal anisotropy beneath the Pacific Ocean region. J Geophys Res 99:15399–15421

    Google Scholar 

  • Yuan H, Romanowicz B (2010) Lithospheric layering in the north American craton. Nature 466:1063–1069

    Google Scholar 

  • Yuan K, Beghein C (2013) Seismic anisotropy changes across upper mantle phase transitions, Earth Planet. Sci Lett 374:132–144

    Google Scholar 

  • Zhou Y, Nolet G, Dahlen F, Laske G (2006) Global upper-mantle structure from finite-frequency surface-wave tomography. J Geophys Res 111:B04,304. https://doi.org/10.1029/2005JB003677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Romanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Romanowicz, B. (2020). Surface Waves. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation