Reliable Broadcast in Dynamic Networks with Locally Bounded Byzantine Failures

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11201))

Abstract

Ensuring reliable communication despite possibly malicious participants is a primary objective in any distributed system or network. In this paper, we investigate the possibility of reliable broadcast in a dynamic network whose topology may evolve while the broadcast is in progress. In particular, we adapt the Certified Propagation Algorithm (CPA) to make it work on dynamic networks and we present conditions (on the underlying dynamic graph) to enable safety and liveness properties of the reliable broadcast. We furthermore explore the complexity of assessing these conditions for various classes of dynamic networks.

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French state funds managed by the ANR (Agence Nationale de la Recherche), and it has has been partially supported by the INOCS Sapienza Ateneo 2017 Project (protocol number RM11715C816CE4CB). Giovanni Farina thanks the Université Franco-Italienne/Universitá Italo-Francese (UFI/UIF) for supporting his mobility through the Vinci grant 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note the assumption of a possibly faulty source leads to a more general problem, the Byzantine Agreement [5].

  2. 2.

    For the sake of simplicity, we consider the channel delay always equal to 1 in the example.

  3. 3.

    Class 1 TVG according to Casteigts et al. [3].

  4. 4.

    Class 6 TVG in Casteigts et al. [3].

  5. 5.

    Class 7 TVG in Casteigts et al. [3].

References

  1. Augustine, J., Pandurangan, G., Robinson, P.: Fast Byzantine agreement in dynamic networks. In: Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium on Principles of Distributed Computing, PODC 2013, 22–24 July 2013, Montreal, QC, Canada, pp. 74–83. ACM (2013)

    Google Scholar 

  2. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally bounded failures. IEEE Trans. Parallel Distrib. Syst. 21(6), 801–811 (2010)

    Article  Google Scholar 

  3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  4. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  5. Dolev, D.: Unanimity in an unknown and unreliable environment. In: 1981 22nd Annual Symposium on Foundations of Computer Science, SFCS 1981, pp. 159–168. IEEE (1981)

    Google Scholar 

  6. Drabkin, V., Friedman, R., Segal, M.: Efficient Byzantine broadcast in wireless ad-hoc networks. In: 2005 Proceedings of International Conference on Dependable Systems and Networks, DSN 2005, pp. 160–169. IEEE (2005)

    Google Scholar 

  7. Gómez-Calzado, C., Casteigts, A., Lafuente, A., Larrea, M.: A connectivity model for agreement in dynamic systems. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 333–345. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-0_26

    Chapter  Google Scholar 

  8. Guerraoui, R., Huc, F., Kermarrec, A.: Highly dynamic distributed computing with Byzantine failures. In: Fatourou, P., Taubenfeld, G. (eds.) ACM Symposium on Principles of Distributed Computing, PODC 2013, 22–24 July 2013, Montreal, QC, Canada, pp. 176–183. ACM (2013)

    Google Scholar 

  9. Ichimura, A., Shigeno, M.: A new parameter for a broadcast algorithm with locally bounded Byzantine faults. Inf. Process. Lett. 110(12–13), 514–517 (2010)

    Article  MathSciNet  Google Scholar 

  10. Koo, C.Y.: Broadcast in radio networks tolerating Byzantine adversarial behavior. In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, pp. 275–282. ACM (2004)

    Google Scholar 

  11. Litsas, C., Pagourtzis, A., Sakavalas, D.: A graph parameter that matches the resilience of the certified propagation algorithm. In: Cichoń, J., Gȩbala, M., Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 269–280. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39247-4_23

    Chapter  Google Scholar 

  12. Maurer, A., Tixeuil, S.: Byzantine broadcast with fixed disjoint paths. J. Parallel Distrib. Comput. 74(11), 3153–3160 (2014)

    Article  Google Scholar 

  13. Maurer, A., Tixeuil, S.: Containing Byzantine failures with control zones. IEEE Trans. Parallel Distrib. Syst. 26(2), 362–370 (2015)

    Article  Google Scholar 

  14. Maurer, A., Tixeuil, S.: Tolerating random Byzantine failures in an unbounded network. Parallel Process. Lett. 26(1) (2016)

    Article  MathSciNet  Google Scholar 

  15. Maurer, A., Tixeuil, S., Defago, X.: Communicating reliably in multihop dynamic networks despite Byzantine failures. In: 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pp. 238–245. IEEE (2015)

    Google Scholar 

  16. Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)

    Article  MathSciNet  Google Scholar 

  17. Raynal, M., Stainer, J., Cao, J., Wu, W.: A simple broadcast algorithm for recurrent dynamic systems. In: 28th IEEE International Conference on Advanced Information Networking and Applications, AINA 2014, 13–16 May 2014, Victoria, BC, Canada, pp. 933–939 (2014)

    Google Scholar 

  18. Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algorithm in presence of Byzantine faults. Inf. Process. Lett. 115(4), 512–514 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Farina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonomi, S., Farina, G., Tixeuil, S. (2018). Reliable Broadcast in Dynamic Networks with Locally Bounded Byzantine Failures. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation