High-Pressure Freezing and Low-Temperature Processing of Plant Tissue Samples for Electron Microscopy

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1080))

Abstract

Use of electron tomography methods improves image resolution of transmission electron microscopy especially in the z-direction, enabling determination of complicated 3D structures of organelles and cytoskeleton arrays. The increase in resolution necessitates preservation of cellular structures close to the native states with minimum artifacts. High-pressure freezing (HPF) that immobilizes molecules in the cell instantaneously has been used to avoid damages caused by convention chemical fixation. Despite the advantages of HPF, cells could still be damaged during dissection prior to HPF. Therefore, it is critical to isolate cells/tissues of interest quickly and carefully. The samples frozen by HPF are often processed by freeze substitution (FS), and FS should be carried out under appropriate conditions. Here we describe dissection, HPF, and FS methods that we have utilized to prepare plant samples for electron tomography/immuno-electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210

    Article  Google Scholar 

  2. Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191

    Chapter  Google Scholar 

  3. Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech 13:165–174

    Article  PubMed  CAS  Google Scholar 

  4. McDonald K (2007) Cryopreparation methods for electron microscopy of selected model systems. Methods Cell Biol 79:23–56

    Article  PubMed  CAS  Google Scholar 

  5. Sartori N, Richter K, Dubochet J (1993) Vitrification depth can be increased more than 10-fold by high-pressure freezing. J Microsc 172:55–61

    Article  CAS  Google Scholar 

  6. Hess MW (2007) Cryopreparation methodology for plant cell biology. Methods Cell Biol 79:57–100

    Article  PubMed  CAS  Google Scholar 

  7. Parthasarathy MV (1995) Freeze-substitution. Methods Cell Biol 49:57–69

    Article  PubMed  CAS  Google Scholar 

  8. Austin JR II, Seguí-Simarro JM, Staehelin LA (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118:3895–3903

    Article  PubMed  CAS  Google Scholar 

  9. Mineyuki Y, Karahara I, Suda Y et al (2006) Electron tomographic analysis of cortical microtubule ends in plant interphase and prophase cells preserved by high-pressure freezing. Proceedings of the 16th international microscopy congress, doi: 10.1016/S0304-3991(08)00010-7, p 17

  10. Otegui MS, Austin JR (2007) Visualization of membrane-cytoskeletal interactions during plant cytokinesis. Methods Cell Biol 79:221–240

    Article  PubMed  CAS  Google Scholar 

  11. Staehelin LA, Kang BH (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468

    Article  PubMed  CAS  Google Scholar 

  12. Kang BH, Staehelin LA (2008) ER-to-Golgi transport by COPII vesicles in Arabidopsis involves a ribosome-excluding scaffold that is transferred with the vesicles to the Golgi matrix. Protoplasma 234:51–64

    Article  PubMed  CAS  Google Scholar 

  13. Kang BH, Nielsen E, Preuss ML et al (2011) Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329

    Article  PubMed  CAS  Google Scholar 

  14. Donohoe BS, Kang BH, Staehelin LA (2007) Identification and characterization of COPIa-and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci USA 104:163–168

    Article  PubMed  CAS  Google Scholar 

  15. Karahara I, Suda J, Tahara H et al (2009) The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J 57:819–831

    Article  PubMed  CAS  Google Scholar 

  16. Tiwari SC, Wick SM, Williamson RE et al (1984) Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol 99:63s–69s

    Article  PubMed  CAS  Google Scholar 

  17. Ding B, Turgeon R, Parthasarathy MV (1991) Microfilaments in the preprophase band of freeze substituted tobacco root cells. Protoplasma 165:209–211

    Article  Google Scholar 

  18. Murata T, Karahara I, Kozuka T et al (2002) Improved method for visualizing coated pits, microfilaments, and microtubules in cryofixed and freeze-substituted plant cells. J Electron Microsc (Tokyo) 51:133–136

    Article  CAS  Google Scholar 

  19. Karahara I, Staehelin LA, Mineyuki Y (2012) The role of endocytosis in the creation of the cortical division zone in plants. In: Ceresa B (ed) Molecular regulation of endocytosis. InTech, Rijeka, pp 41–60

    Google Scholar 

  20. Kang BH, **ong Y, Williams DS et al (2009) Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol 151:1366–1376

    Article  PubMed  CAS  Google Scholar 

  21. Toyooka K, Goto Y, Asatsuma S et al (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229

    Article  PubMed  CAS  Google Scholar 

  22. Washida H, Sugino A, Doroshenk KA et al (2012) RNA targeting to a specific ER sub-domain is required for efficient transport and packaging of α-globulins to the protein storage vacuole in develo** rice endosperm. Plant J 70:471–479

    Article  PubMed  CAS  Google Scholar 

  23. Reyes FC, Chung T, Holding D et al (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23:769–784

    Article  PubMed  CAS  Google Scholar 

  24. Otegui MS, Staehelin LA (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218:501–515

    Article  PubMed  CAS  Google Scholar 

  25. Meehl JB, Giddings TH Jr, Winey M (2009) High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies. Methods Mol Biol 586:227–241

    Article  PubMed  CAS  Google Scholar 

  26. Kang BH (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96:259–283

    Article  PubMed  Google Scholar 

  27. Takeuchi M, Takabe K, Mineyuki Y (2010) Immunoelectron microscopy of cryofixed and freeze-substituted plant tissues. In: Schwartzbach S, Osafune T (eds) Immuno-electron microscopy: methods and protocols. The Humana Press Inc., Totoa, pp 155–164

    Google Scholar 

  28. Mineyuki Y, Karahara I, Murata T et al (2001) High pressure freezing in plant tissues. Denshi Kenbikyo 36:105–107 (in Japanese)

    CAS  Google Scholar 

  29. Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253

    PubMed  CAS  Google Scholar 

  30. Kaneko Y, Keegstra K (1996) Plastid biogenesis in embryonic pea leaf cells during early germination. Protoplasma 195:59–67

    Article  Google Scholar 

  31. Mineyuki Y, Suda J, Karahara I (2004) Electron tomography. Plant Morphol 16: 21–30

    Article  Google Scholar 

  32. Koh EJ, Zhou L, Williams DS et al (2012) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 249: 687–697

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant (No. 24620003) to I. K. and NSF (No. MCB 0958107) and USDA (AFRI 2010-04196) to B.-H. K. We are thankful to Dr. Mineyuki (University of Hyogo) and Donna S. Williams (University of Florida) for their careful reading and comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Karahara, I., Kang, BH. (2014). High-Pressure Freezing and Low-Temperature Processing of Plant Tissue Samples for Electron Microscopy. In: Žárský, V., Cvrčková, F. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1080. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-643-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-643-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-642-9

  • Online ISBN: 978-1-62703-643-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation