In Situ Ligation: A Decade and a Half of Experience

  • Protocol
  • First Online:
DNA Damage Detection In Situ, Ex Vivo, and In Vivo

Part of the book series: Methods in Molecular Biology ((MIMB,volume 682))

Abstract

The in situ ligation (ISL) methodology detects apoptotic cells by the presence of characteristic DNA double-strand breaks. A labeled double-stranded probe is ligated to the double-strand breaks in situ on tissue sections. Like the popular TUNEL assay, ISL detects cells in apoptosis based on the ongoing destruction of DNA by apoptotic nucleases. In comparison to TUNEL, it is more specific for apoptosis versus other causes of DNA damage, both repairable damage and necrosis. In the decade and a half since its introduction, ISL has been used in several hundred publications. Here we review the development of the method, its current status, and its uses and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 114.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 155.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Didenko, V.V., Wang, X., Yang, L., and Hornsby, P.J. (1999) DNA damage and p21WAF1/CIP1/SDI1 in experimental injury of the rat adrenal cortex and trauma-associated damage of the human adrenal cortex. J. Pathol. 189, 119–126.

    Article  PubMed  CAS  Google Scholar 

  2. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  3. Steigerwald, S.D., Pfeifer, G.P., and Riggs, A.D. (1990) Ligation-mediated PCR improves the sensitivity of methylation analysis by restriction enzymes and detection of specific DNA strand breaks. Nucleic Acids Res. 18, 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  4. Didenko, V.V., and Hornsby, P.J. (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J. Cell Biol. 135, 1369–1376.

    Article  PubMed  CAS  Google Scholar 

  5. Wyllie, A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556.

    Article  PubMed  CAS  Google Scholar 

  6. Didenko, V.V., Tunstead, J.R., and Hornsby, P.J. (1998) Biotin-labeled hairpin oligonucleotides. Probes to detect double-strand breaks in DNA in apoptotic cells. Am. J. Pathol. 152, 897–902.

    PubMed  CAS  Google Scholar 

  7. Didenko, V.V., Boudreaux, D.J., and Baskin, D.S. (1999) Substantial background reduction in ligase-based apoptosis detection using newly designed hairpin oligonucleotide probes. Biotechniques 27, 1130–1132.

    PubMed  CAS  Google Scholar 

  8. Fortuno, M.A., Gonzalez, A., Ravassa, S., Lopez, B., and Diez, J. (2003) Clinical implications of apoptosis in hypertensive heart disease. Am. J. Heart Circ. Physiol. 284, H1495–H1506.

    CAS  Google Scholar 

  9. Gonzalez, A., Fortuno, M.A., Querejeta, R., Ravassa, S., Lopez, B., Lopez, N., and Diez, J. (2003) Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc. Res. 59, 549–562.

    Article  PubMed  CAS  Google Scholar 

  10. Kunapuli, S., Rosanio, S., and Schwarz, E.R. (2006) How do cardiomyocytes die? Apoptosis and Autophagic cell death in cardiac myocytes. J. Card. Fail. 12, 381–391.

    Article  PubMed  CAS  Google Scholar 

  11. Koda, M., Takemura, G., Kanoh, M., et al. (2003) Myocytes positive for in situ markers for DNA breaks in human hearts which are hypertrophic, but neither failed nor dilated: a manifestation of cardiac hypertrophy rather than failure. J. Pathol. 199, 229–236.

    Article  PubMed  Google Scholar 

  12. Hughes, S.E. (2003) Detection of apoptosis using in situ markers for DNA strand breaks in the failing human heart. Fact or epiphenomenon? J. Pathol. 201, 181–186.

    Article  PubMed  Google Scholar 

  13. Okada, H., Takemura, G., Koda, M., Kanoh, M. Kawase, Y., Minatoguchi, S., and Fujiwara, H. (2005) Myocardial apoptotic index based on in situ DNA nick end-labeling of endomyocardial biopsies does not predict prognosis of dilated cardiomyopathy. Chest 128, 1060–1062.

    Article  PubMed  Google Scholar 

  14. Jugdutt, B.I., and Idikio, H.A. (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol. Cell. Biochem. 270, 177–200.

    Article  PubMed  CAS  Google Scholar 

  15. Takemura, G., and Fujiwara, H. (2006) Morphological aspects of apoptosis in heart diseases. J. Cell. Mol. Med. 10, 56–75.

    Article  PubMed  CAS  Google Scholar 

  16. Takemura, G., and Fujiwara, H. (2003) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49, 330–352.

    Article  Google Scholar 

  17. Lukes, D.J., Tivesten, A., Wilton, J., Lundgren, A., Rakotonirainy, O., Kjellström, C., Isgaard, J., Karlsson-Parra, A., Soussi, B., and Olausson, M. (2003) Early onset of rejection in concordant hamster xeno hearts display signs of necrosis, but not apoptosis, correlating to the phosphocreatine concentration. Transpl. Immunol. 12, 29–40.

    Article  PubMed  CAS  Google Scholar 

  18. Zhu, C., Qiu, L., Wang, X., Hallin, U., Candé, C., Kroemer, G., Hagberg, H., and Blomgren, K. (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J. Neurochem. 86, 306–317.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, X., Zhu, C., Qiu, L., Hagberg, H., Sandberg, M., and Blomgren, K. (2003) Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J. Neurochem. 86, 351–62.

    Article  PubMed  CAS  Google Scholar 

  20. Plesnila, N., Zhu, C., Culmsee, C., Gröger, M., Moskowitz, M.A., and Blomgren, K. (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 24, 458–466.

    Article  PubMed  Google Scholar 

  21. Stein, A.B., Bolli, R., Guo, Y., Wang, O.L., Tan, W., Wu, W.J., Zhu, X., Zhu, Y., and Xuan, Y.T. (2007) The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis. J. Mol. Cell. Cardiol. 42, 1075–1085.

    Article  PubMed  CAS  Google Scholar 

  22. Lesauskaite, V., Epistolato, M.C., Ivanoviene, L., and Tanganelli, P. (2004) Apoptosis of cardiomyocytes in explanted and transplanted hearts. Comparison of results from in situ TUNEL, ISEL, and ISL reactions. Am. J. Clin. Pathol. 121, 108–116.

    Article  PubMed  Google Scholar 

  23. Sun, B., Huang, Q., Liu, S., Chen, M., Hawks, C.L., Wang, L., Zhang, C., and Hornsby, P.J. (2004) Progressive loss of malignant behavior in telomerase-negative tumorigenic adrenocortical cells and restoration of tumorigenicity by human telomerase reverse transcriptase. Cancer Res. 64, 6144–6151.

    Article  PubMed  CAS  Google Scholar 

  24. Donath, S., Li, P., Willenbockel, C., Al-Saadi, N., Gross, V., Willnow, T., Bader, M., Martin, U., Bauersachs, J., Wollert, K.C., Dietz, R., and von Harsdorf, R. (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation. 113, 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  25. Audo, I., Darjatmoko, S.R., Schlamp, C.L., Lokken, J.M., Lindstrom, M.J., Albert, D.M., and Nickells, R.W. (2003) Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest. Ophthalmol. Vis. Sci. 44, 4192–4199.

    Article  PubMed  Google Scholar 

  26. Matsuoka, R., Ogawa, K., Yaoita, H., Naganuma, W., Maehara, K., and Maruyama, Y. (2002) Characteristics of death of neonatal rat cardiomyocytes following hypoxia or hypoxia-reoxygenation: the association of apoptosis and cell membrane disintegrity. Heart Vessels 16, 241–248.

    Article  PubMed  Google Scholar 

  27. Hornsby, P.J., and Didenko, V.V. (2002) In situ DNA ligation as a method for labeling apoptotic cells in tissue sections: an overview, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ, pp.133–141.

    Chapter  Google Scholar 

  28. Didenko, V.V. (2002) Detection of specific double-strand DNA breaks and apoptosis in situ using T4 DNA ligase, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ, pp.143–151.

    Chapter  Google Scholar 

  29. Ribeiro, G.F., Côrte-Real, M., and Johansson, B. (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol. Biol. Cell. 17, 4584–4591.

    Article  PubMed  CAS  Google Scholar 

  30. Schoppet, M., Al-Fakhri, N., Franke, F.E., Katz, N., Barth, P.J., Maisch, B., Preissner, K.T., and Hofbauer, L.C. (2004) Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Mönckeberg’s sclerosis and atherosclerosis. J. Clin. Endocrinol. Metab. 89, 4104–4112.

    Article  PubMed  CAS  Google Scholar 

  31. Frustaci, A., Chimenti, C., Pieroni, M., Salvatori, L., Morgante, E., Sale, P., Ferretti, E., Petrangeli, E., Gulino, A., and Russo, M.A. (2006) Cell death, proliferation and repair in human myocarditis responding to immunosuppressive therapy. Mod. Pathol. 19, 755–765.

    PubMed  CAS  Google Scholar 

  32. Walker, P.R., Carson, C., Leblanc, J., and Sikorska, M. (2002) Labeling DNA damage with terminal transferase: applicability, specificity and limitations, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ pp.3–19.

    Google Scholar 

  33. Charriaut-Marlangue, C., and Ben-Ari, Y. (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7, 61–64.

    PubMed  CAS  Google Scholar 

  34. Wolvekamp, M.C., Darby, I.A., and Fuller, P.J. (1998) Cautionary note on the use of end-labeling DNA fragments for detection of apoptosis. Pathology 30, 267.

    Article  PubMed  CAS  Google Scholar 

  35. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W., and Schulte-Hermann, R. (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21, 1465.

    PubMed  CAS  Google Scholar 

  36. Sloop, G.D., Roa, J.C., Delgado, A.G., Balart, J.T., Hines, M.O., and Hill, J.M. (1999) Histologic sectioning produces TUNEL reactivity. A potential cause of false-positive staining. Arch. Pathol. Lab. Med. 123, 529.

    PubMed  CAS  Google Scholar 

  37. Bassotti, G., Villanacci, V., Fisogni, S., Cadei, M., Galletti, A., Morelli, A., and Salerni, B. (2007) Comparison of three methods to assess enteric neuronal apoptosis in patients with slow transit constipation. Apoptosis 12, 329–332.

    Article  PubMed  CAS  Google Scholar 

  38. Didenko, V.V., Ngo, H., Minchew, C.L., Boudreaux, D.J., Widmayer, M.A, and Baskin, D.S. (2002) Visualization of irreparable ischemic damage in brain by selective labeling of double-strand blunt-ended DNA breaks. Mol. Med. 8, 818–823.

    PubMed  CAS  Google Scholar 

  39. Didenko, V.V., Ngo, H., James, W., and Baskin, D.S. (2003) Early necrotic DNA degradation: presence of blunt ended DNA breaks, 3′ and 5′ overhangs in apoptosis but only 5′ overhangs in necrosis. Am. J. Pathol. 162, 1571–1578.

    Article  PubMed  CAS  Google Scholar 

  40. Sikorska, M., and Walker, P.R. (1998) Endonuclease activities and apoptosis, in When Cells Die (Lockshin, R.A., Zakeri, Z., and Tilly, J.L., eds.), Wiley-Liss, New York, pp.211–242.

    Google Scholar 

  41. Barry, M.A., and Eastman, A. (1993) Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem. Biophys. 300, 440–450

    Article  PubMed  CAS  Google Scholar 

  42. Didenko, V.V. (2008) New in apoptosis imaging: dual detection of self-execution and waste-management. Cellutions 1, 13–15.

    Google Scholar 

  43. Grosse, F., and Manns, A. (1993) Terminal deoxyribonucleotidyl transferase (EC 2.7.7.31), in Enzymes of Molecular Biology (Burrell, M.M. ed.), Humana, Totowa, NJ, pp.95–105.

    Chapter  Google Scholar 

  44. Maunders, M.J. (1993) DNA and RNA ligases (EC 6.5.1.1, EC 6.5.1.2,and EC 6.5.1.3), in Enzymes of Molecular Biology (Burrell, M.M. ed.), Humana, Totowa, NJ, pp.213–230.

    Chapter  Google Scholar 

  45. Didenko, V.V., Ngo, H., and Baskin, D.S. (2002) In situ detection of double-strand DNA breaks with terminal 5′OH groups, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ, pp.153–159.

    Chapter  Google Scholar 

  46. Didenko, V.V., Minchew, C.L., Shuman, S., and Baskin, D.S. (2004) Semi-artificial fluorescent molecular machine for DNA damage detection. Nano Lett. 4, 2461–2466.

    Article  PubMed  CAS  Google Scholar 

  47. Didenko, V.V. (2006) Oscillating probe for dual detection of 5′PO4 and 5′OH DNA breaks in tissue sections, in Fluorescent Energy Transfer Nucleic Acid Probes: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ, pp.59–69.

    Chapter  Google Scholar 

  48. Al-Lamki, R.S., Skepper, J.N., Loke, Y.W., King, A., and Burton, G.J. (1998) Apoptosis in the early human placental bed and its discrimination from necrosis using the in-situ DNA ligation technique. Hum. Reprod. 13, 3511–3519.

    Article  PubMed  CAS  Google Scholar 

  49. Donath, S., Li, P., Willenbockel, C., Al-Saadi, N., Gross, V., Willnow, T., Bader, M., Martin, U., Bauersachs, J., Wollert, K.C., Dietz, R., and von Harsdorf, R. (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 7, 1203–1212.

    Article  Google Scholar 

  50. Durand, E., Mallat, Z., Addad, F., Vilde, F., Desnos, M., Guérot, C., Tedgui, A., and Lafont, A. (2002) Time courses of apoptosis and cell proliferation and their relationship to arterial remodeling and restenosis after angioplasty in an atherosclerotic rabbit model. J. Am. Coll. Cardiol. 39, 1680–1685.

    Article  PubMed  Google Scholar 

  51. Kockx, M.M., Muhring, J., Knaapen, M.W.M., and De Meyer, G.R.Y. (1998) RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am. J. Pathol. 152, 885–888.

    PubMed  CAS  Google Scholar 

  52. Zhu, C., Wang, X., Hagberg, H., and Blomgren, K. (2000) Correlation between ­caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J. Neurochem. 75, 819–829.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe, M., Hitomi, M., van der Wee, K., et al. (2002) The pros and cons of apoptosis assays for use in the study of cells, tissues, and organs. Microsc. Microanal. 8, 375–391.

    Article  PubMed  CAS  Google Scholar 

  54. Murata, I., Takemura, G., Asano, K., Sano, H., Fujisawa, K., Kagawa, T., Baba, K., Maruyama, R., Minatoguchi, S., Fujiwara, T., and Fujiwara, H. (2002) Apoptotic cell loss following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes. Am. J. Nephrol. 22, 587–595.

    Article  PubMed  Google Scholar 

  55. Zavitsanou, K., Nguyen, V., Greguric, I., Chapman, J., Ballantyne, P., and Katsifis, A. (2007) Detection of apoptotic cell death in the thymus of dexamethasone treated rats using [123I]annexin V and in situ oligonucleotide ligation. J. Mol. Histol. 38, 313–319.

    Article  PubMed  CAS  Google Scholar 

  56. Mahaney, B.L., Meek, K., and Lees-Miller, S.P. (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem. J. 417, 639–650.

    Article  PubMed  CAS  Google Scholar 

  57. Staley, K., Blaschke, A.J., and Chun, J. (1997) Apoptotic DNA fragmentation is detected by a semi-quantitative ligation-mediated PCR of blunt DNA ends. Cell Death Differ. 4, 66–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Didenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hornsby, P.J., Didenko, V.V. (2011). In Situ Ligation: A Decade and a Half of Experience. In: Didenko, V. (eds) DNA Damage Detection In Situ, Ex Vivo, and In Vivo. Methods in Molecular Biology, vol 682. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-409-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-409-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-408-1

  • Online ISBN: 978-1-60327-409-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation