Overcoming Inhibition in Real-Time Diagnostic PCR

  • Protocol
  • First Online:
PCR Detection of Microbial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 943))

Abstract

PCR is an important and powerful tool in several fields, including clinical diagnostics, food analysis, and forensic analysis. In theory, PCR enables the detection of one single cell or DNA molecule. However, the presence of PCR inhibitors in the sample affects the amplification efficiency of PCR, thus lowering the detection limit, as well as the precision of sequence-specific nucleic acid quantification in real-time PCR. In order to overcome the problems caused by PCR inhibitors, all the steps leading up to DNA amplification must be optimized for the sample type in question. Sampling and sample treatment are key steps, but most of the methods currently in use were developed for conventional diagnostic methods and not for PCR. Therefore, there is a need for fast, simple, and robust sample preparation methods that take advantage of the accuracy of PCR. In addition, the thermostable DNA polymerases and buffer systems used in PCR are affected differently by inhibitors. During recent years, real-time PCR has developed considerably and is now widely used as a diagnostic tool. This technique has greatly improved the degree of automation and reduced the analysis time, but has also introduced a new set of PCR inhibitors, namely those affecting the fluorescence signal. The purpose of this chapter is to view the complexity of PCR inhibition from different angles, presenting both molecular explanations and practical ways of dealing with the problem. Although diagnostic PCR brings together scientists from different diagnostic fields, end-users have not fully exploited the potential of learning from each other. Here, we have collected knowledge from archeological analysis, clinical diagnostics, environmental analysis, food analysis, and forensic analysis. The concept of integrating sampling, sample treatment, and the chemistry of PCR, i.e., pre-PCR processing, will be addressed as a general approach to overcoming real-time PCR inhibition and producing samples optimal for PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    PubMed  CAS  Google Scholar 

  2. Rådström P, Löfström C, Lövenklev M, Knutsson R, Wolffs P (2003) Strategies for overcoming PCR inhibition. PCR primer. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  3. Lantz PG, Hahn-Hägerdal B, Rådström P (1994) Sample preparation methods in PCR-based detection of food pathogen. Trends Food Sci Technol 5:384–389

    CAS  Google Scholar 

  4. Bessetti J (2007) An introduction to PCR inhibitors. Promega Profiles in DNA 10:9–10

    Google Scholar 

  5. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

  6. Butler JM (2005) Forensic DNA ty**; biology, technology, and genetics of STR markers. Elsevier Academic, New York

    Google Scholar 

  7. Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C (2004) Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26:133–146

    PubMed  Google Scholar 

  8. Abu Al-Soud W, Rådström P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64:3748–3753

    PubMed  CAS  Google Scholar 

  9. Wolffs P, Grage H, Hagberg O, Rådström P (2004) Impact of DNA polymerases and their buffer systems on quantitative real-time PCR. J Clin Microbiol 42:408–411

    PubMed  CAS  Google Scholar 

  10. Roussel Y, Wilks M, Harris A, Mein C, Tabaqchali S (2005) Evaluation of DNA extraction methods from mouse stomachs for the quantification of H. pylori by real-time PCR. J Microbiol Methods 62:71–81

    PubMed  CAS  Google Scholar 

  11. Eckhart L, Bach J, Ban J, Tschachler E (2000) Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem Biophys Res Commun 271:726–730

    PubMed  CAS  Google Scholar 

  12. Pruvost M, Geigl E-M (2004) Real-time quantitative PCR to assess the authenticity of ancient DNA amplification. J Archaeol Sci 31:1191–1197

    Google Scholar 

  13. Huggett JF, Novak T, Garson JA et al (2008) Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes 1:70

    PubMed  Google Scholar 

  14. Sikorsky JA, Primerano DA, Fenger TW, Denvir J (2004) Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method. Biochem Biophys Res Commun 323:823–830

    PubMed  CAS  Google Scholar 

  15. Lantz PG, Matsson M, Wadström T, Rådström P (1997) Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J Microbiol Methods 28:159–167

    CAS  Google Scholar 

  16. Abu Al-Soud W, Jönsson LJ, Rådström P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38:345–350

    Google Scholar 

  17. Akane A, Shiono H, Matsubara K, Nakamura H, Hasegawa M, Kagawa M (1993) Purification of forensic specimens for the polymerase chain reaction (PCR) analysis. J Forensic Sci 38:691–701

    PubMed  CAS  Google Scholar 

  18. AbuAl-Soud W, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493

    Google Scholar 

  19. Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58:2292–2295

    PubMed  CAS  Google Scholar 

  20. Tsai YL, Olson BH (1992) Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol 58:754–757

    PubMed  CAS  Google Scholar 

  21. Katcher HL, Schwartz I (1994) A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol. Biotechniques 16:84–92

    PubMed  CAS  Google Scholar 

  22. Belec L, Authier J, Eliezer-Vanerot MC, Piedouillet C, Mohamed AS, Gherardi RK (1998) Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle Nerve 21:1064–1067

    PubMed  CAS  Google Scholar 

  23. Powell HA, Gooding CM, Garrett SD, Lund BM, McKee RA (1994) Proteinase inhibition of the detection of Listeria monocytogenes in milk using the polymerase chain reaction. Lett Appl Microbiol 18:59–61

    CAS  Google Scholar 

  24. Bickley J, Short JK, McDowell DG, Parkes HC (1996) Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol 22:153–158

    PubMed  CAS  Google Scholar 

  25. McDevitt JJ, Lees PSJ, Merz WG, Schwab KJ (2007) Inhibition of quantitative PCR analysis of fungal conidia associated with indoor air particulate matter. Aerobiologia 23:35–45

    Google Scholar 

  26. Shutler GG, Gagnon P, Verret G et al (1999) Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stains from a five year old case. J Forensic Sci 44:623–626

    PubMed  CAS  Google Scholar 

  27. Wadowsky RM, Laus S, Libert T, States SJ, Ehrlich GD (1994) Inhibition of PCR-based assay for Bordetella pertussis by using calcium alginate fiber and aluminum shaft components of a nasopharyngeal swab. J Clin Microbiol 32:1054–1057

    PubMed  CAS  Google Scholar 

  28. McHale RH, Stapleton PM, Bergquist PL (1991) Rapid preparation of blood and tissue samples for polymerase chain reaction. Biotechniques 10(20):22–23

    Google Scholar 

  29. Knutsson R, Löfström C, Grage H, Hoorfar J, Rådström P (2002) Modeling of 5′ nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica. J Clin Microbiol 40:52–60

    PubMed  CAS  Google Scholar 

  30. Malmström H, Storå J, Dalén L, Holmlund G, Götherström A (2005) Extensive human DNA contamination in extracts from ancient dog bones and teeth. Mol Biol Evol 22:2040–2047

    PubMed  Google Scholar 

  31. Noordhoek GT, Weel JF, Poelstra E, Hooghiernstra M, Brandenburg AH (2008) Clinical validation of a new real-time PCR assay for detection of enteroviruses and parechoviruses, and implications for diagnostic procedures. J Clin Virol 41:75–80

    PubMed  CAS  Google Scholar 

  32. Ten Hove RJ, van Lieshout L, Brienen EA, Perez MA, Verweij JJ (2008) Real-time polymerase chain reaction for detection of Isospora belli in stool samples. Diagn Microbiol Infect Dis 61(3):280–283

    PubMed  Google Scholar 

  33. Verweij JJ, Mulder B, Poell B, van Middelkoop D, Brienen EAT, van Lieshout L (2007) Real-time PCR for the detection of Dientamoeba fragilis in fecal samples. Mol Cell Probes 21:400–404

    PubMed  CAS  Google Scholar 

  34. Volkmann H, Schwartz T, Kirchen S, Stofer C, Obst U (2007) Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol Cell Probes 21:125–133

    PubMed  CAS  Google Scholar 

  35. Pan M, McBeath AJA, Hay SJ, Pierce GJ, Cunningham CO (2008) Real-time PCR assay for detection and relative quantification of Liocarcinus depurator larvae from plankton samples. Mar Biol 153:859–870

    CAS  Google Scholar 

  36. Ramirez NE, Sreevatsan S (2006) Development of a sensitive detection system for Cryptosporidium in environmental samples. Vet Parasitol 136:201–213

    PubMed  Google Scholar 

  37. Demontis MA, Cacciola SO, Orru M et al (2008) Development of real-time PCR systems based on SYBR Green I and TaqMan technologies for specific quantitative detection of Phoma tracheiphila in infected citrus. Eur J Plant Pathol 120:339–351

    CAS  Google Scholar 

  38. Cankar K, Stebih D, Dreo T, Zel J, Gruden K (2006) Critical points of DNA quantification by real-time PCR - effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37

    PubMed  Google Scholar 

  39. Josefsen MH, Krause M, Hansen F, Hoorfar J (2007) Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl Environ Microbiol 73:3040–3048

    PubMed  CAS  Google Scholar 

  40. Hein I, Flekna G, Krassnig M, Wagner M (2006) Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J Microbiol Methods 66:538–547

    PubMed  CAS  Google Scholar 

  41. Rodriguez-Lazaro D, Pla M, Scortti M, Monzo HJ, Vazquez-Boland JA (2005) A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Appl Environ Microbiol 71:9008–9012

    PubMed  CAS  Google Scholar 

  42. Swango KL, Timken MD, Chong MD, Buoncristiani MR (2006) A quantitative PCR assay for the assessment of DNA degradation in forensic samples. Forensic Sci Int 158:12–26

    Google Scholar 

  43. Andreasson H, Gyllensten U, Allen M (2002) Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques 33:402–404, 407–411

    PubMed  CAS  Google Scholar 

  44. Evans JJ, Wictum EJ, Penedo MC, Kanthaswamy S (2007) Real-time polymerase chain reaction quantification of canine DNA. J Forensic Sci 52:93–96

    PubMed  CAS  Google Scholar 

  45. Andreasson H, Allen M (2003) Rapid quantification and sex determination of forensic ­evidence materials. J Forensic Sci 48:1280–1287

    PubMed  Google Scholar 

  46. Hudlow W, Chong M, Swango K, Timken M, Buoncristiani M (2008) A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: a diagnostic tool for STR ty**. Forensic Sci Int Genet 2:108–125

    PubMed  Google Scholar 

  47. Wen J, Guillo C, Ferrance JP, Landers JP (2007) Microfluidic-based DNA purification in a two-stage, dual-phase microchip containing a reversed-phase and a photopolymerized monolith. Anal Chem 79:6135–6142

    PubMed  CAS  Google Scholar 

  48. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362–372

    PubMed  CAS  Google Scholar 

  49. Suslov O, Steindler DA (2005) PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res 33:e181

    PubMed  Google Scholar 

  50. Yedidag EN, Koffron AJ, Mueller KH et al (1996) Acyclovir triphosphate inhibits the diagnostic polymerase chain reaction for cytomegalovirus. Transplantation 62:238–242

    PubMed  CAS  Google Scholar 

  51. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    PubMed  CAS  Google Scholar 

  52. Sutlovic D, Gamulin S, Definis-Gojanovic M, Gugic D, Andjelinovic S (2008) Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis 29:1467–1472

    PubMed  CAS  Google Scholar 

  53. Sutlovic D, Definis Gojanovic M, Andelinovic S, Gugic D, Primorac D (2005) Taq polymerase reverses inhibition of quantitative real time polymerase chain reaction by humic acid. Croat Med J 46:556–562

    PubMed  Google Scholar 

  54. Mahony J, Chong S, Jang D et al (1998) Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction, and transcription-mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J Clin Microbiol 36:3122–3126

    PubMed  CAS  Google Scholar 

  55. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    PubMed  CAS  Google Scholar 

  56. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based ty** from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  57. Gudnason H, Dufva M, Bang DD, Wolff A (2007) Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res 35:e127

    PubMed  Google Scholar 

  58. Burkhart CA, Norris MD, Haber M (2002) A simple method for the isolation of genomic DNA from mouse tail free of real-time PCR inhibitors. J Biochem Biophys Methods 52:145–149

    PubMed  CAS  Google Scholar 

  59. Zipper H, Buta C, Lammle K, Brunner H, Bernhagen J, Vitzthum F (2003) Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucleic Acids Res 31:e39

    PubMed  Google Scholar 

  60. Gonzalez A, Grimes R, Walsh EJ, Dalton T, Davies M (2007) Interaction of quantitative PCR components with polymeric surfaces. Biomed Microdevices 9:261–266

    PubMed  CAS  Google Scholar 

  61. Abu Al-Soud W, Ouis IS, Li DQ, Ljungh A, Wadström T (2005) Characterization of the PCR inhibitory effect of bile to optimize ­real-time PCR detection of Helicobacter species. FEMS Immunol Med Microbiol 44:177–182

    Google Scholar 

  62. Scholz M, Giddings I, Pusch CM (1998) A polymerase chain reaction inhibitor of ancient hard and soft tissue DNA extracts is determined as human collagen type I. Anal Biochem 259:283–286

    PubMed  CAS  Google Scholar 

  63. Rossen L, Norskov P, Holmstrom K, Rasmussen OF (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 17:37–45

    PubMed  CAS  Google Scholar 

  64. Burgess LC, Hall JO (1999) UV light irradiation of plastic reaction tubes inhibits PCR. Biotechniques 27:252, 254–256

    PubMed  CAS  Google Scholar 

  65. Tamariz J, Voynarovska K, Prinz M, Caragine T (2006) The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci 51:790–794

    PubMed  CAS  Google Scholar 

  66. Fox DH, Huang CK, Du J, Chang TY, Pan Q (2007) Profound inhibition of the PCR step of CF V3 multiplex PCR/OLA assay by the use of UV-irradiated plastic reaction tubes. Diagn Mol Pathol 16:121–123

    PubMed  CAS  Google Scholar 

  67. Johnson DW, Pieniazek NJ, Griffin DW, Misener L, Rose JB (1995) Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl Environ Microbiol 61:3849–3855

    PubMed  CAS  Google Scholar 

  68. Thornton CG, Passen S (2004) Inhibition of PCR amplification by phytic acid, and treatment of bovine fecal specimens with phytase to reduce inhibition. J Microbiol Methods 59:43–52

    PubMed  CAS  Google Scholar 

  69. Monteiro L, Bonnemaison D, Vekris A et al (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35:995–998

    PubMed  CAS  Google Scholar 

  70. Fehlmann C, Krapf R, Solioz M (1993) Reverse transcriptase can block polymerase chain reaction. Clin Chem 39:368–369

    PubMed  CAS  Google Scholar 

  71. Khan G, Kangro HO, Coates PJ, Heath RB (1991) Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J Clin Pathol 44:360–365

    PubMed  CAS  Google Scholar 

  72. Bej AK, Mahbubani MH, Dicesare JL, Atlas RM (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534

    PubMed  CAS  Google Scholar 

  73. Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI (1994) Effect of heparin on polymerase chain reaction. Lancet 343:1509–1510

    PubMed  CAS  Google Scholar 

  74. Vaneechoutte M, Van Eldere J (1997) The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J Med Microbiol 46:188–194

    PubMed  CAS  Google Scholar 

  75. Gryson N, Dewettinck K, Messens K (2007) Influence of cocoa components on the PCR detection of soy lecithin DNA. Eur Food Res Technol 226:247–254

    CAS  Google Scholar 

  76. Nolan T, Hands RE, Ogunkolade W, Bustin SA (2006) SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 351:308–310

    PubMed  CAS  Google Scholar 

  77. Bustin SA (2005) Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5:493–498

    PubMed  CAS  Google Scholar 

  78. Flekna G, Schneeweiss W, Smulders FJM, Wagner M, Hein I (2007) Real-time PCR method with statistical analysis to compare the potential of DNA isolation methods to remove PCR inhibitors from samples for diagnostic PCR. Mol Cell Probes 21:282–287

    PubMed  CAS  Google Scholar 

  79. Schneeweiss W, Stanek C, Wagner M, Hein I (2007) Inhibitor-free DNA for real-time PCR analysis of synovial fluid from horses, cattle and pigs. Vet Microbiol 121:189–193

    PubMed  CAS  Google Scholar 

  80. Reiss RA, Rutz B (1999) Quality control PCR: a method for detecting inhibitors of Taq DNA polymerase. Biotechniques 27:920–922, 924–926

    PubMed  CAS  Google Scholar 

  81. Niederstätter H, Köchl S, Grubwieser P, Palvic M, Steinlechner M, Parson W (2007) A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Sci Int Genet 1:29–34

    PubMed  Google Scholar 

  82. Green RL, Roinestad IC, Boland C, Hennessy LK (2005) Developmental validation of the Quantifiler real-time PCR kits for the quantification of human nuclear DNA samples. J Forensic Sci 50:809–825

    PubMed  CAS  Google Scholar 

  83. Hoorfar J, Cook N, Malorny B et al (2003) Making internal amplification control mandatory for diagnostic PCR. J Clin Microbiol 41:5835

    PubMed  Google Scholar 

  84. Rosenstraus M, Wang Z, Chang SY, DeBonville D, Spadoro JP (1998) An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol 36:191–197

    PubMed  CAS  Google Scholar 

  85. Maaroufi Y, de Bruyne JM, Duchateau V, Scheen R, Crokaert F (2006) Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunol Med Microbiol 48:183–191

    PubMed  CAS  Google Scholar 

  86. Hartman LJ, Coyne SR, Norwood DA (2005) Development of a novel internal positive control for TaqMan based assays. Mol Cell Probes 19:51–59

    PubMed  CAS  Google Scholar 

  87. Murphy NM, McLauchlin J, Ohai C, Grant KA (2007) Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 120:110–119

    PubMed  CAS  Google Scholar 

  88. Juen A, Traugott M (2006) Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol Biochem 38:1872–1879

    CAS  Google Scholar 

  89. Guescini M, Sisti D, Rocchi MB, Stocchi L, Stocchi V (2008) A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC Bioinformatics 9:326

    PubMed  Google Scholar 

  90. Kontanis EJ, Reed FA (2006) Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci 51:795–804

    PubMed  CAS  Google Scholar 

  91. Tichopad A, Didier A, Pfaffl MW (2004) Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Mol Cell Probes 18:45–50

    PubMed  CAS  Google Scholar 

  92. Chervoneva I, Hyslop T, Iglewicz B et al (2006) Statistical algorithm for assuring similar efficiency in standards and samples for absolute quantification by real-time reverse transcription polymerase chain reaction. Anal Biochem 348:198–208

    PubMed  CAS  Google Scholar 

  93. Yang YG, Kim JY, Song YH, Kim DS (2007) A novel buffer system, AnyDirect, can improve polymerase chain reaction from whole blood without DNA isolation. Clin Chim Acta 380:112–117

    PubMed  CAS  Google Scholar 

  94. Abu Al-Soud W, Rådström P (2000) Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol 38:4463–4470

    PubMed  CAS  Google Scholar 

  95. Ahokas H, Erkkila MJ (1993) Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl 3:65–68

    PubMed  CAS  Google Scholar 

  96. Wang MY, Olson BH, Chang JS (2007) Improving PCR and qPCR detection of hydrogenase A (hydA) associated with clostridia in pure cultures and environmental sludges using bovine serum albumin. Appl Microbiol Biotechnol 77:645–656

    PubMed  CAS  Google Scholar 

  97. De Boer SH, Ward LJ, Li X, Chittaranjan S (1995) Attenuation of PCR inhibition in the presence of plant compounds by addition of BLOTTO. Nucleic Acids Res 23:2567–2568

    PubMed  Google Scholar 

  98. Arbeli Z, Fuentes CL (2007) Improved purification and PCR amplification of DNA from environmental samples. FEMS Microbiol Lett 272:269–275

    PubMed  CAS  Google Scholar 

  99. Demeke T, Adams RP (1992) The effects of plant polysaccharides and buffer additives on PCR. Biotechniques 12:332–334

    PubMed  CAS  Google Scholar 

  100. Simon MC, Gray DI, Cook N (1996) DNA Extraction and PCR methods for the detection of Listeria monocytogenes in cold-smoked salmon. Appl Environ Microbiol 62:822–824

    PubMed  CAS  Google Scholar 

  101. **n ZG, Velten JP, Oliver MJ, Burke JJ (2003) High-throughput DNA extraction method suitable for PCR. Biotechniques 34:820–826

    PubMed  CAS  Google Scholar 

  102. Comey CT, Jung JM, Budowle B (1991) Use of formamide to improve amplification of HLA DQ alpha sequences. Biotechniques 10:60–61

    PubMed  CAS  Google Scholar 

  103. Pomp D, Medrano JF (1991) Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10:58–59

    PubMed  CAS  Google Scholar 

  104. Sidhu MK, Liao MJ, Rashidbaigi A (1996) Dimethyl sulfoxide improves RNA amplification. Biotechniques 21:44–47

    PubMed  CAS  Google Scholar 

  105. ISO/FDIS17604. Microbiology of food and animal feeding stuffs-Carcass sampling for microbiological analysis. INTERNATIONAL STANDARD ISO/FDIS 17604 2003

    Google Scholar 

  106. ISO18593. Microbiology of food and animal feeding stuffs-horizontal methods for sampling techniques from surfaces using contact plates and swabs. INTERNATIONAL STANDARD ISO 18593 2004

    Google Scholar 

  107. Hodges LR, Rose LJ, Peterson A, Noble-Wang J, Arduino MJ (2006) Evaluation of a macrofoam swab protocol for the recovery of Bacillus anthracis spores from a steel surface. Appl Environ Microbiol 72:4429–4430

    PubMed  CAS  Google Scholar 

  108. Buttner MP, Cruz P, Stetzenbach LD, Cronin T (2007) Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR. Appl Environ Microbiol 73:3505–3510

    PubMed  CAS  Google Scholar 

  109. Buttner MP, Cruz P, Stetzenbach LD, Klima-Comba AK, Stevens VL, Emanuel PA (2004) Evaluation of the biological sampling kit (BiSKit) for large-area surface sampling. Appl Environ Microbiol 70:7040–7045

    PubMed  CAS  Google Scholar 

  110. Brown GS, Betty RG, Brockmann JE et al (2007) Evaluation of a wipe surface sample method for collection of Bacillus spores from nonporous surfaces. Appl Environ Microbiol 73:706–710

    PubMed  CAS  Google Scholar 

  111. Brown GS, Betty RG, Brockmann JE et al (2007) Evaluation of rayon swab surface sample collection method for Bacillus spores from nonporous surfaces. J Appl Microbiol 103:1074–1080

    PubMed  CAS  Google Scholar 

  112. Patterson JT (1971) Microbiological assessment of surfaces. J Food Technol 6:63–72

    Google Scholar 

  113. Lin Z, Suzow JG, Fontaine JM, Naylor EW (2005) A simple automated DNA extraction method for dried blood specimens collected on filter paper. JALA 10:310–314

    CAS  Google Scholar 

  114. Snijders JMA, Janssen MHW, Gerats GE, Corstiaensen GP (1984) A comparative study of sampling techniques for monitoring carcass contamination. Int J Food Microbiol 1:229–236

    Google Scholar 

  115. Bourke MT, Scherczinger CA, Ladd C, Lee HC (1999) NaOH treatment to neutralize inhibitors of Taq polymerase. J Forensic Sci 44:1046–1050

    PubMed  CAS  Google Scholar 

  116. Hsiao KM, Lin HM, Pan H et al (1999) Application of FTA sample collection and DNA purification system on the determination of CTG trinucleotide repeat size by PCR-based Southern blotting. J Clin Lab Anal 13:188–193

    PubMed  CAS  Google Scholar 

  117. Pearce RA, Bolton DJ (2005) Excision vs. sponge swabbing - a comparison of methods for the microbiological sampling of beef, pork and lamb carcasses. J Appl Microbiol 98:896–900

    PubMed  CAS  Google Scholar 

  118. Anslinger K, Bayer B, Rolf B, Keil W, Eisenmenger W (2005) Application of the BioRobot EZ1 in a forensic laboratory. Leg Med (Tokyo) 7:164–168

    CAS  Google Scholar 

  119. von Wurmb-Schwark N, Malyusz V, Fremdt H, Koch C, Simeoni E, Schwark T (2006) Fast and simple DNA extraction from saliva and sperm cells obtained from the skin or isolated from swabs. Leg Med (Tokyo) 8:177–181

    Google Scholar 

  120. Rose L, Jensen B, Peterson A, Banerjee SN, Arduino MJ (2004) Swab materials and Bacillus anthracis spore recovery from nonporous surfaces. Emerg Infect Dis 10:1023–1029

    PubMed  Google Scholar 

  121. Sweet D, Lorente M, Lorente JA, Valenzuela A, Villanueva E (1997) An improved method to recover saliva from human skin: the double swab technique. J Forensic Sci 42:320–322

    PubMed  CAS  Google Scholar 

  122. Pang BC, Cheung BK (2007) Double swab technique for collecting touched evidence. Leg Med (Tokyo) 9:181–184

    CAS  Google Scholar 

  123. Walsh P, Overmyer CL, Pham K et al (2008) Comparison of respiratory virus detection rates in infants and toddlers using flocked swabs, saline aspirates and saline aspirates mixed in UTM-RT. J Clin Microbiol 46(7):2374–2376

    PubMed  Google Scholar 

  124. Li RC, Harris HA (2003) Using hydrophilic adhesive tape for collection of evidence for forensic DNA analysis. J Forensic Sci 48:1318–1321

    PubMed  CAS  Google Scholar 

  125. Schöld M, Dufva C, Forsslund S, Jangblad A. The hand on the shoulder: a case report where Low Copy Number (LCN) DNA analysis was vital for solving a robbery. Proceedings of the fourth European Academy of Forensic Science Conference, Helsinki, Finland, 2006

    Google Scholar 

  126. Bright JA, Petricevic SF (2004) Recovery of trace DNA and its application to DNA profiling of shoe insoles. Forensic Sci Int 145:7–12

    PubMed  CAS  Google Scholar 

  127. Grant KA, Dickinson JH, Payne MJ, Campbell S, Collins MD, Kroll RG (1993) Use of the polymerase chain reaction and 16 S rRNA sequences for the rapid detection of Brochothrix spp. in foods. J Appl Bacteriol 74:260–267

    PubMed  CAS  Google Scholar 

  128. Nogva HK, Rudi K, Naterstad K, Holck A, Lillehaug D (2000) Application of 5′-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl Environ Microbiol 66:4266–4271

    PubMed  CAS  Google Scholar 

  129. Wolffs P, Knutsson R, Norling B, Rådström P (2004) Rapid quantification of Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J Clin Microbiol 42:1042–1047

    PubMed  CAS  Google Scholar 

  130. Lindqvist R (1997) Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Int J Food Microbiol 37:73–82

    PubMed  CAS  Google Scholar 

  131. Wolffs P, Norling B, Hoorfar J, Griffiths M, Rådström P (2005) Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR. Appl Environ Microbiol 71:5759–5764

    PubMed  CAS  Google Scholar 

  132. Curran S, McKay JA, McLeod HL, Murray GI (2000) Laser capture microscopy. Mol Pathol 53:64–68

    PubMed  CAS  Google Scholar 

  133. Elliott K, Hill DS, Lambert C, Burroughes TR, Gill P (2003) Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci Int 137:28–36

    PubMed  CAS  Google Scholar 

  134. Anoruo B, van Oorschot R, Mitchell J, Howells D (2007) Isolating cells from non-sperm cellular mixtures using the PALM microlaser micro dissection system. Forensic Sci Int 173:93–96

    PubMed  CAS  Google Scholar 

  135. Lambie-Anoruo BL, Prince DV, Koukoulas I, Howells DW, Mitchell RJ, van Oorschot RAH (2006) Laser microdissection and pressure catapulting with PALM to assist ty** of target DNA in dirt samples. Int Cong Ser 1288:559–561

    Google Scholar 

  136. Hochmeister MN, Budowle B, Borer UV, Eggmann U, Comey CT, Dirnhofer R (1991) Ty** of deoxyribonucleic acid (DNA) extracted from compact bone from human remains. J Forensic Sci 36:1649–1661

    PubMed  CAS  Google Scholar 

  137. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  138. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

  139. Watanabe Y, Takayama T, Hirata K et al (2003) DNA ty** from cigarette butts. Leg Med (Tokyo) 5(Suppl 1):S177–S179

    CAS  Google Scholar 

  140. Abolmaaty A, Gu W, Witkowsky R, Levin RE (2007) The use of activated charcoal for the removal of PCR inhibitors from oyster samples. J Microbiol Methods 68:349–352

    PubMed  CAS  Google Scholar 

  141. Braid MD, Daniels LM, Kitts CL (2003) Removal of PCR inhibitors from soil DNA by chemical flocculation. J Microbiol Methods 52:389–393

    PubMed  CAS  Google Scholar 

  142. McCormick RM (1989) A solid-phase extraction procedure for DNA purification. Anal Biochem 181:66–74

    PubMed  CAS  Google Scholar 

  143. Soerensen E, Hansen SH, Eriksen B, Morling N (2003) Applications of thiopropyl Sepharose 6B for removal of PCR inhibitors from DNA extracts from different sources. Int Cong Ser 1239:821–823

    Google Scholar 

  144. Gustavson KH (1954) Note on the fixation of vegetable tannins by polyvinylpyrrolidone. Sven Kem Tidskr 66:359–362

    CAS  Google Scholar 

  145. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for ­purification of nucleic acids. J Clin Microbiol 28:495–503

    PubMed  CAS  Google Scholar 

  146. Tian H, Huhmer AF, Landers JP (2000) Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 283:175–191

    PubMed  CAS  Google Scholar 

  147. Hedman J, Albinsson L, Ansell C et al (2008) A fast analysis system for forensic DNA reference samples. Forensic Sci Int Genet 2:184–189

    PubMed  Google Scholar 

  148. Nagy M, Otremba P, Kruger C et al (2005) Optimization and validation of a fully automated silica-coated magnetic beads purification technology in forensics. Forensic Sci Int 152:13–22

    PubMed  CAS  Google Scholar 

  149. Kishore R, Reef Hardy W, Anderson VJ, Sanchez NA, Buoncristiani MR (2006) Optimization of DNA extraction from low-yield and degraded samples using the BioRobot EZ1 and BioRobot M48. J Forensic Sci 51:1055–1061

    PubMed  CAS  Google Scholar 

  150. Montpetit SA, Fitch IT, O’Donnell PT (2005) A simple automated instrument for DNA extraction in forensic casework. J Forensic Sci 50:555–563

    PubMed  CAS  Google Scholar 

  151. Andradas Heranz J, García Poveda E, Alvarez Fernández F (2008) DNA Extraction using the Tecan Freedom EVO® 200 and DNA IQ™ system. Promega Profiles in DNA 11:7–8

    Google Scholar 

  152. Moss D, Harbison SA, Saul DJ (2003) An easily automated, closed-tube forensic DNA extraction procedure using a thermostable proteinase. Int J Legal Med 117:340–349

    PubMed  CAS  Google Scholar 

  153. Broemling D, Pel J, Gunn D et al (2007) An instrument for automated purification of nucleic acids from contaminated forensic samples. JALA 13:40–48

    Google Scholar 

  154. Lantz PG, Tjerneld F, Borch E, Hahn-Hägerdal B, Rådström P (1994) Enhanced sensitivity in PCR detection of Listeria monocytogenes in soft cheese through use of an aqueous two-phase system as a sample preparation method. Appl Environ Microbiol 60:3416–3418

    PubMed  CAS  Google Scholar 

  155. Moreira D (1998) Efficient removal of PCR inhibitors using agarose-embedded DNA preparations. Nucleic Acids Res 26:3309–3310

    PubMed  CAS  Google Scholar 

  156. Sweet D, Lorente M, Valenzuela A, Lorente JA, Alvarez JC (1996) Increasing DNA extraction yield from saliva stains with a modified Chelex method. Forensic Sci Int 83:167–177

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part financed by the support of the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning, FORMAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hedman, J., Rådström, P. (2013). Overcoming Inhibition in Real-Time Diagnostic PCR. In: Wilks, M. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology, vol 943. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-353-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-353-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-352-7

  • Online ISBN: 978-1-60327-353-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation