Artificial Membrane Models for the Study of Macromolecular Delivery

  • Protocol
  • First Online:
Macromolecular Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 480))

Summary

Artificial biomembrane mimetic model systems are used to characterize peptide–membrane interactions using a wide range of methods. Herein, we present the use of selected membrane model systems to investigate peptide–membrane interactions. We describe methods for the preparation of various membrane mimetic media. Our applications will focus on small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs) as well as on media more suited for nuclear magnetic resonance (NMR) techniques, micelles, and fast-tumbling two-component bilayered micelles (bicelles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gennis, R.B. (1989) Biomembranes: Molecular Structure and Function. Springer, New York.

    Google Scholar 

  2. Magzoub, M., K. Kilk, L.E.G. Erikssom, U. Langel, and A. Gräslund (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim. Biophys. Acta 1512, 77–89.

    Article  PubMed  CAS  Google Scholar 

  3. Magzoub, M., L.E.G. Eriksson, and A. Gräslund (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim. Biophys. Acta 1563, 53–63.

    Article  PubMed  CAS  Google Scholar 

  4. Magzoub, M., L.E.G. Eriksson, and A. Gräslund (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys. Chem. 103, 271–288.

    Article  PubMed  CAS  Google Scholar 

  5. Weinstein J.N., S. Yoshikami, P. Henkart, R. Blumenthal, and W.A. Hagins (1977) Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195, 489–492.

    Article  PubMed  CAS  Google Scholar 

  6. Andersson, A., J. Danielsson, A. Gräslund, and L. Mäler (2007) Kinetic models for peptide-induced leakage from vesicles and cells. Eur. Biophys. J. 36, 621–635.

    Article  PubMed  CAS  Google Scholar 

  7. Magzoub, M., and A. Gräslund (2004) Cell-penetrating peptides: from inception to application. Q. Rev. Biophys. 37, 147–195.

    Article  PubMed  CAS  Google Scholar 

  8. Terrone, D., S. Leung, W. Sang, L. Roudaia, and J. Silvius (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42, 13787–13799.

    Article  PubMed  CAS  Google Scholar 

  9. Thorén, P., D. Persson, E. Esbjörner, M. Goksör, B. Lincoln, and B. Nordén (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43, 3471–3489.

    Article  PubMed  Google Scholar 

  10. Bárány-Wallje, E., S. Keller, S. Serowy, S. Geibel, P. Pohl, M. Bienert, and M. Dathe (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys. J. 89, 2513–2521.

    Article  PubMed  Google Scholar 

  11. Magzoub, M., A. Pramanik, and A. Gräslund (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44, 14890–14897.

    Article  PubMed  CAS  Google Scholar 

  12. Björklund, J., H. Biverståhl, A. Gräslund, L. Mäler, and P. Brzezinski (2006) Real.time transmembrane translocation of penetratin driven by light-generated proton pum**. Biophys. J. Biophys. Lett. 91, L29–L31.

    Google Scholar 

  13. Fischer, A., T. Oberholzer, and P.L. Luisi (2000) Giant vesicles as models to study the interactions between membranes and proteins. Biochim. Biophys. Acta 1467, 177–188.

    Article  PubMed  CAS  Google Scholar 

  14. Lindberg, M., J. Jarvet, U. Langel, and A. Gräslund (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry 40, 3141–3149.

    Article  PubMed  CAS  Google Scholar 

  15. Biverståhl, H., A. Andersson, A. Gräslund and L. Mäler (2004) NMR solution structure and membrane interaction of the N-terminal sequence (1–30) of the bovine prion protein. Biochemistry 43, 14940–14947.

    Article  PubMed  Google Scholar 

  16. Damberg, P., J. Jarvet, and A. Gräslund (2001) Micellar systems as solvents in peptide and protein structure determination. Meth. Enzymol. 339, 271–285.

    Article  PubMed  CAS  Google Scholar 

  17. Chou, J.J., J.D. Kaufman, S.J. Stahl, P.T. Wingfield, and A. Bax (2002) Micelle-induced curvature in a water-insoluble HIV-1 env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Am. Chem. Soc. 124, 2450–2451.

    Article  PubMed  CAS  Google Scholar 

  18. Andersson A., and L. Mäler (2002) NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution. J. Biomol. NMR 24, 103–112.

    Article  PubMed  CAS  Google Scholar 

  19. Ram, P., and J.H. Prestegard (1988) Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim. Biophys. Acta 940, 289–294.

    Article  PubMed  CAS  Google Scholar 

  20. Sanders, C.R., and J.H. Prestegard (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys. J. 58, 447–460.

    Article  PubMed  CAS  Google Scholar 

  21. Gaemers, S., and A. Bax (2001) Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. J. Am. Chem. Soc. 123, 12343–11235.

    Article  PubMed  CAS  Google Scholar 

  22. Arnold, A., T. Labrot, R. Oda, and E.J. Dufourc (2002) Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy. Biophys. J. 83, 2667–2680.

    Article  PubMed  CAS  Google Scholar 

  23. Nieh, M.P., V.A. Raghunathan, C.J. Glinka, T.A. Harroun, G. Pabst, and J. Katsaras (2004) Magnetically alignable phase of phospholipid “bicelle” mixtures is a chiral nematic made up of wormlike micelles. Langmuir 20, 7893–7897.

    Article  PubMed  CAS  Google Scholar 

  24. van Dam, L., G. Karlsson, and K. Edwards (2004) Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim. Biophys. Acta 1664, 241–256.

    Article  PubMed  Google Scholar 

  25. Triba, M.N., D.E. Warschawski, and P.F. Devaux (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys. J. 88, 1887–1901.

    Article  PubMed  CAS  Google Scholar 

  26. Triba, M.N., P.F. Devaux, and D.E. Warschawski (2006) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys. J. 91, 1357–1367.

    Article  PubMed  CAS  Google Scholar 

  27. Vold, R.R., and R.S. Prosser (1996) Magnetically oriented phospholipid bilayer micelles for structural studies of polypeptides. Does the ideal bicelle exist? J. Magnet. Reson. 113, 267–271.

    Article  CAS  Google Scholar 

  28. Vold, R.R., S.R. Prosser, and A.J. Deese (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J. Biomol. NMR 9, 329–335.

    Article  PubMed  CAS  Google Scholar 

  29. Glover, K.J., J.A. Whiles, G. Wu, N.-J. Yu, R. Deems, J.O. Struppe, R.E. Stark, E.A. Komives, and R.R. Vold (2001) Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys. J. 81, 2163–2171.

    Article  PubMed  CAS  Google Scholar 

  30. Luchette, P.A., T.N. Vetman, R.S. Prosser, R.E.W. Hancock, M.P. Nieh, C.J. Glinka, S. Krueger, and J. Katsaras (2001) Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study. Biochim. Biophys. Acta 1513, 83–94.

    Article  PubMed  CAS  Google Scholar 

  31. Sanders, C.R.I., and G.C. Landis (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34, 4030–4040.

    Article  PubMed  CAS  Google Scholar 

  32. Faham, S., and J.U. Bowie (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6.

    Article  PubMed  CAS  Google Scholar 

  33. Marcotte, I., and M. Auger (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magnet. Reson. 24, 17–37.

    Article  Google Scholar 

  34. Prosser, R.S., F. Evanics, J.L. Kitevski, M.S. Al-Abdul-Wahid (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45, 8453–8465.

    Article  PubMed  CAS  Google Scholar 

  35. Andersson A., and L. Mäler (2005) Magnetic resonance investigations of lipid motion in isotropic bicelles. Langmuir 21, 7702–7709.

    Article  PubMed  CAS  Google Scholar 

  36. Bárány-Wallje E., A. Andersson, A. Gräslund, and L. Mäler (2006) Dynamics of transportan in bicelles is surface charge dependent. J. Biomol. NMR 35, 137–147.

    Article  PubMed  Google Scholar 

  37. Nagle, J.F., and S. Tristram-Nagle (2000) Structure of lipid bilayers. Biochim. Biophys. Acta 1469, 159–195.

    PubMed  CAS  Google Scholar 

  38. Orädd, G., and G. Lindblom (2004) NMR Studies of lipid lateral diffusion in the DMPC/gramicidin D/water system: peptide aggregation and obstruction effects. Biophys. J. 87, 980–987.

    Article  PubMed  Google Scholar 

  39. Hinz, H.J., and J.M. Sturtevant (1972) Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L-lecithins in aqueous suspension. J. Biol. Chem. 247, 3697–3700.

    PubMed  CAS  Google Scholar 

  40. Mayer, C., G. Gröbner, K. Müller, K. Weisz, and G. Kothe (1990) Orientation-dependent deuteron spin-lattice relaxation times in bilayer membranes: characterization of the overall lipid motion. Chem. Phys. Lett. 165, 155–161.

    Article  CAS  Google Scholar 

  41. Ellena, J.F., L.S. Lepore, and D.S. Cafiso (1993) Estimating lipid lateral diffusion in phospholipid vesicles from 13C spin–spin relaxation. J. Phys. Chem. 97, 2952–2957.

    Article  CAS  Google Scholar 

  42. Mayer, L.D., M.J. Hope, and P.R. Cullis (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mäler, L., Gräslund, A. (2009). Artificial Membrane Models for the Study of Macromolecular Delivery. In: Belting, M. (eds) Macromolecular Drug Delivery. Methods in Molecular Biology, vol 480. Humana Press. https://doi.org/10.1007/978-1-59745-429-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-429-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-999-4

  • Online ISBN: 978-1-59745-429-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation