Hydro-Cy3-Mediated Detection of Reactive Oxygen Species In Vitro and In Vivo

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Reactive oxygen species (ROS) are potent signaling molecules with critical roles in cellular pathology and homeostasis. They are produced in all cell types via a diverse array of cellular machinery, giving rise to an equally diverse repertoire of molecular effects. These range from cytotoxic killing of microbes to alteration of the cellular transcriptional response to stress. Despite their importance, research into ROS has been difficult given their inherent instability and transient signaling properties. Herein we describe methods for the use of the redox-sensitive probe hydro-Cy3 for the detection and quantification of ROS both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang Y, Bazhin AV, Werner J et al (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32:249–270

    Article  Google Scholar 

  2. Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  Google Scholar 

  3. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  CAS  Google Scholar 

  4. Singel KL, Segal BH (2016) NOX2-dependent regulation of inflammation. Clin Sci (Lond) 130:479–490

    Article  CAS  Google Scholar 

  5. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  Google Scholar 

  6. Kikuchi H, Hikage M, Miyashita H et al (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254:237–243

    Article  CAS  Google Scholar 

  7. Leoni G, Alam A, Neumann P-A et al (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123:443–454

    Article  CAS  Google Scholar 

  8. Jones RM, Luo L, Ardita CS et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028

    Article  CAS  Google Scholar 

  9. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  Google Scholar 

  10. Go Y-M, Jones DP (2017) Redox theory of aging: implications for health and disease. Clin Sci (Lond) 131:1669–1688

    Article  CAS  Google Scholar 

  11. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  Google Scholar 

  12. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    Article  CAS  Google Scholar 

  13. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  Google Scholar 

  14. Moi P, Chan K, Asunis I et al (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91:9926–9930

    Article  CAS  Google Scholar 

  15. McMahon M, Thomas N, Itoh K et al (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 281:24756–24768

    Article  CAS  Google Scholar 

  16. Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913

    Article  CAS  Google Scholar 

  17. Jones RM, Desai C, Darby TM et al (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–1225

    Article  CAS  Google Scholar 

  18. Sadlowski CM, Maity S, Kundu K et al (2017) Hydrocyanines: a versatile family of probes for imaging radical oxidants in vitro and in vivo. Mol Sys Des Eng 2:191–200

    Article  CAS  Google Scholar 

  19. Kundu K, Knight SF, Willett N et al (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed Engl 48:299–303

    Article  CAS  Google Scholar 

  20. Ardita CS, Mercante JW, Kwon YM et al (2014) Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol 80:5068–5077

    Article  Google Scholar 

  21. Alam A, Leoni G, Quiros M et al (2016) The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 1:15021

    Article  CAS  Google Scholar 

  22. Pizarro G, Ríos E (2004) How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol 124:239–258

    Article  CAS  Google Scholar 

  23. Shapovalov SA, Kiseleva YS (2008) The association of cyanine dye cations with phenol red anions in aqueous solutions. Russ J Phys Chem 82:972–977

    Article  CAS  Google Scholar 

  24. Zhdanov AV, Aviello G, Knaus UG et al (2017) Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential. Biochim Biophys Acta 1861:198–204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the NIH AI64462 and CA179424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Neish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saeedi, B.J., Chandrasekharan, B., Neish, A.S. (2019). Hydro-Cy3-Mediated Detection of Reactive Oxygen Species In Vitro and In Vivo. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation