Mouse Models of COPD

  • Protocol
  • First Online:
Lung Innate Immunity and Inflammation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1809))

Abstract

Elastase and chronic cigarette smoke exposure animal models are commonly used to study lung morphologic and functional changes associated with emphysema-like airspace enlargement in various animal species. This chapter describes the rationale for using these two models to study mechanisms of COPD pathogenesis and provides protocols for their implementation. E-cigarettes are an emerging health concern and may also contribute to lung disease. Accordingly, approaches to study e-cigarette vapors are provided. This chapter also includes methods and tools necessary to assess lung morphologic and functional changes in animals with emphysema-like airspace enlargement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lucey EC, Goldstein RH, Stone PJ, Snider GL (1998) Remodeling of alveolar walls after elastase treatment of hamsters. Results of elastin and collagen mRNA in situ hybridization. Am J Respir Crit Care Med 158(2):555–564

    Article  CAS  PubMed  Google Scholar 

  2. Snider GL, Lucey EC, Stone PJ (1986) Animal models of emphysema. Am Rev Respir Dis 133(1):149–169

    Article  CAS  PubMed  Google Scholar 

  3. Wright JL, Churg A (1990) Cigarette smoke causes physiologic and morphologic changes of emphysema in the Guinea pig. Am Rev Respir Dis 142(6 Pt 1):1422–1428

    Article  CAS  PubMed  Google Scholar 

  4. Takubo Y, Guerassimov A, Ghezzo H, Triantafillopoulos A, Bates JH, Hoidal JR et al (2002) Alpha1-antitrypsin determines the pattern of emphysema and function in tobacco smoke-exposed mice: parallels with human disease. Am J Respir Crit Care Med 166(12 Pt 1):1596–1603

    Article  PubMed  Google Scholar 

  5. Fallica J, Das S, Horton M, Mitzner W (2011) Application of carbon monoxide diffusing capacity in the mouse lung. J Appl Physiol (1985) 110(5):1455–1459

    Article  Google Scholar 

  6. Weibel ER, Hsia CC, Ochs M (2007) How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol (1985) 102(1):459–467

    Article  Google Scholar 

  7. Ochs M (2006) A brief update on lung stereology. J Microsc 222(Pt 3):188–200

    Article  PubMed  Google Scholar 

  8. Vasilescu DM, Klinge C, Knudsen L, Yin L, Wang G, Weibel ER et al (2013) Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology. J Appl Physiol (1985) 114(6):716–724

    Article  Google Scholar 

  9. Guerassimov A, Hoshino Y, Takubo Y, Turcotte A, Yamamoto M, Ghezzo H et al (2004) The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med 170(9):974–980

    Article  PubMed  Google Scholar 

  10. Podowski M, Calvi C, Metzger S, Misono K, Poonyagariyagorn H, Lopez-Mercado A et al (2012) Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice. J Clin Invest 122(1):229–240

    Article  CAS  PubMed  Google Scholar 

  11. Gosker HR, Langen RC, Bracke KR, Joos GF, Brusselle GG, Steele C et al (2009) Extrapulmonary manifestations of chronic obstructive pulmonary disease in a mouse model of chronic cigarette smoke exposure. Am J Respir Cell Mol Biol 40(6):710–716

    Article  CAS  PubMed  Google Scholar 

  12. Churg A, Wright JL (2009) Testing drugs in animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Proc Am Thorac Soc 6(6):550–552

    Article  CAS  PubMed  Google Scholar 

  13. Ni K, Serban KA, Batra C, Petrache I (2016) Alpha-1 antitrypsin investigations using animal models of emphysema. Ann Am Thorac Soc 13(Suppl 4):S311–S316

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yamato H, Sun JP, Churg A, Wright JL (1997) Guinea pig pulmonary hypertension caused by cigarette smoke cannot be explained by capillary bed destruction. J Appl Physiol (1985) 82(5):1644–1653

    Article  CAS  Google Scholar 

  15. Antunes MA, Rocco PR (2011) Elastase-induced pulmonary emphysema: insights from experimental models. An Acad Bras Cienc 83(4):1385–1396

    Article  CAS  PubMed  Google Scholar 

  16. Sawada M, Ohno Y, La BL, Funaguchi N, Asai T, Yuhgetsu H et al (2007) The Fas/Fas-ligand pathway does not mediate the apoptosis in elastase-induced emphysema in mice. Exp Lung Res 33(6):277–288

    Article  CAS  PubMed  Google Scholar 

  17. Luthje L, Raupach T, Michels H, Unsold B, Hasenfuss G, Kogler H et al (2009) Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model. Respir Res 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen A, George O (2013) Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psych 4:41

    Google Scholar 

  19. Yee BE, Ahmed MI, Brugge D, Farrell M, Lozada G, Idupaganthi R et al (2010) Second-hand smoking and carboxyhemoglobin levels in children: a prospective observational study. Paediatr Anaesth 20(1):82–89

    Article  PubMed  Google Scholar 

  20. Harris AC, Mattson C, Lesage MG, Keyler DE, Pentel PR (2010) Comparison of the behavioral effects of cigarette smoke and pure nicotine in rats. Pharmacol Biochem Behav 96(2):217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benowitz NL, Jacob P 3rd (1984) Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther 35(4):499–504

    Article  CAS  PubMed  Google Scholar 

  22. Brody AL, Mandelkern MA, London ED, Khan A, Kozman D, Costello MR et al (2011) Effect of secondhand smoke on occupancy of nicotinic acetylcholine receptors in brain. Arch Gen Psychiatry 68(9):953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D et al (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63(8):907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ, Enelow R et al (2008) Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 118(8):2771–2784

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Das S, MacDonald K, Chang HY, Mitzner W (2013) A simple method of mouse lung intubation. J Vis Exp 21(73):e50318. PMC3639692

    Google Scholar 

Download references

Acknowledgments

Funding sources are RO1HL077328 (IP) and 2014 Alpha-1 Foundation Gordon L. Snider Scholar Award (KAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina A. Serban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serban, K.A., Petrache, I. (2018). Mouse Models of COPD. In: Alper, S., Janssen, W. (eds) Lung Innate Immunity and Inflammation. Methods in Molecular Biology, vol 1809. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8570-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8570-8_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8569-2

  • Online ISBN: 978-1-4939-8570-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation