Computational Tools for Aiding Rational Antibody Design

  • Protocol
  • First Online:
Computational Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

Antibodies are a group of proteins responsible for mediating immune reactions in vertebrates. They are able to bind a variety of structural motifs on noxious molecules tagging them for elimination from the organism. As a result of their versatile binding properties, antibodies are currently one of the most important classes of biopharmaceuticals. In this chapter, we discuss how knowledge-based computational methods can aid experimentalists in the development of potent antibodies. When using common experimental methods for antibody development, we often know the sequence of an antibody that binds to our molecule, antigen, of interest. We may also have a structure or model of the antigen. In these cases, computational methods can help by both modeling the antibody and identifying the antibody–antigen contact residues. This information can then play a key role in the rational design of more potent antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson WH (2014) Sequencing the functional antibody repertoire-diagnostic and therapeutic discovery. Nat Rev Rheumatol 11:171–182. doi:10.1038/nrrheum.2014.220

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A 74:5140–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murad JP, Lin OA, Espinosa EV, Khasawneh FT (2012) Current and experimental antibody-based therapeutics: insights, breakthroughs, setbacks and future directions. Curr Mol Med 13:165–178

    Article  Google Scholar 

  4. Reichert JM (2014) Antibodies to watch in 2014: mid-year update. MAbs 6:799–802. doi:10.4161/mabs.29282

    Article  PubMed  Google Scholar 

  5. Reichert JM (2013) Which are the antibodies to watch in 2013? MAbs 5:1–4. doi:10.4161/mabs.22976

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reichert JM (2010) Antibodies to watch in 2010. MAbs 2:84–100, doi: 10677 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. Protein Eng Des Sel 25:507–521. doi:10.1093/protein/gzs024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lapidoth GD, Baran D, Pszolla GM et al (2015) AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83:1385–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pantazes RJ, Maranas CD (2010) OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel 11:849–858

    Article  Google Scholar 

  10. Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29

    CAS  PubMed  Google Scholar 

  12. Martin ACR (2010) Protein sequence and structure analysis of antibody variable domains. In: Antibody engineering, vol 2. Springer, Berlin, pp 33–51

    Chapter  Google Scholar 

  13. Safdari Y, Farajnia S, Asgharzadeh M, Khalili M (2013) Antibody humanization methods–a review and update. Biotechnol Genet Eng Rev 29:175–186. doi:10.1080/02648725.2013.801235

    Article  CAS  PubMed  Google Scholar 

  14. Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1:189–203. doi:10.1093/bfgp/1.2.189

    Article  CAS  PubMed  Google Scholar 

  15. Kretzschmar T, Von Rüden T (2002) Antibody discovery: phage display. Curr Opin Biotechnol 13:598–602. doi:10.1016/S0958-1669(02)00380-4

    Article  CAS  PubMed  Google Scholar 

  16. Dunbar J, Krawczyk K, Leem J et al (2013) SAbDab: the structural antibody database. Nucleic Acids Res 42(Database issue):D1140–D1146

    PubMed  PubMed Central  Google Scholar 

  17. Almagro JC, Teplyakov A, Luo J et al (2014) Second antibody modeling assessment (AMA-II). Proteins 82:1553–1562. doi:10.1002/prot.24567

    Article  CAS  PubMed  Google Scholar 

  18. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948. doi:10.1006/jmbi.1997.1354

    Article  CAS  PubMed  Google Scholar 

  20. Abhinandan KR, Martin ACR (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839

    Article  CAS  PubMed  Google Scholar 

  21. Lefranc MP (2011) IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 6:633–642

    Google Scholar 

  22. Honegger A, Plückthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670. doi:10.1006/jmbi.2001.4662

    Article  CAS  PubMed  Google Scholar 

  23. Ehrenmann F, Kaas Q, Lefranc M (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 38:D301–D307

    Article  CAS  PubMed  Google Scholar 

  24. Adolf-Bryfogle J, Xu Q, North B et al (2015) PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res 43:D432–D438

    Article  PubMed  Google Scholar 

  25. MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745. doi:10.1006/jmbi.1996.0548

    Article  CAS  PubMed  Google Scholar 

  26. Lefranc M, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  PubMed  Google Scholar 

  27. North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 2:228–256

    Article  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 4:901–917

    Article  Google Scholar 

  30. Chothia C, Lesk AM, Tramontano A et al (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883

    Article  CAS  PubMed  Google Scholar 

  31. Tramontano A, Chothia C, Lesk AM (1989) Structural determinants of the conformations of medium-sized loops in proteins. Proteins 6:382–394

    Article  CAS  PubMed  Google Scholar 

  32. Martin ACR (1996) Accessing the Kabat antibody sequence database by computer. Proteins 25:130–133

    Article  CAS  PubMed  Google Scholar 

  33. Oliva B, Bates PA, Querol E et al (1998) Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J Mol Biol 279:1193–1210

    Article  CAS  PubMed  Google Scholar 

  34. Nikoloudis D, Pitts JE, Street M, Ridgeway T (2014) A complete, multi-level conformational clustering of antibody complementarity-determining regions. PeerJ 2:e456

    Article  PubMed  PubMed Central  Google Scholar 

  35. Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440. doi:10.1002/prot.22658

    CAS  PubMed  Google Scholar 

  36. Choi Y, Deane CM (2011) Predicting antibody complementarity determining region structures without classification. Mol Biosyst 7:3327–3334

    Article  CAS  PubMed  Google Scholar 

  37. Morea V, Tramontano A, Rustici M et al (1998) Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol 275:269–294

    Article  CAS  PubMed  Google Scholar 

  38. Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins 73:608–620. doi:10.1002/prot.22087

    Article  CAS  PubMed  Google Scholar 

  39. Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24:1953–1954

    Article  CAS  PubMed  Google Scholar 

  40. Shirai H, Ikeda K, Yamashita K et al (2014) High-resolution modeling of antibody structures by a combination of bioinformatics, expert knowledge, and molecular simulations. Proteins 82:1624–1635

    Article  CAS  PubMed  Google Scholar 

  41. Riechmann L, Clark M, Waldmann H et al (1988) Resha** human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  42. Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499

    Article  CAS  PubMed  Google Scholar 

  43. Chatellier J, Van Regenmortel MH, Vernet T, Altschuh D (1996) Functional map** of conserved residues located at the VL and VH domain interface of a Fab. J Mol Biol 264:1–6. doi:10.1006/jmbi.1996.0618

    Article  CAS  PubMed  Google Scholar 

  44. Banfield MJ, King DJ, Mountain A, Brady RL (1997) VL:VH domain rotations in engineered antibodies: crystal structures of the Fab fragments from two murine antitumor antibodies and their engineered human constructs. Proteins 29:161–171

    Article  CAS  PubMed  Google Scholar 

  45. Khalifa MB, Weidenhaupt M, Choulier L et al (2000) Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context. J Mol Recognit 13:127–139. doi:10.1002/1099-1352(200005/06)13:3<127::AID-JMR495>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  46. Nakanishi T, Tsumoto K, Yokota A et al (2008) Critical contribution of VH–VL interaction to resha** of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 17:261–270. doi:10.1110/ps.073156708.Protein

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fera D, Schmidt AG, Haynes BF et al (2014) Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 111:10275–10280. doi:10.1073/pnas.1409954111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whitelegg NR, Rees AR (2000) WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng 12:819–824

    Article  Google Scholar 

  49. Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:W34–W40. doi:10.1093/nar/gkt382

    Article  PubMed  PubMed Central  Google Scholar 

  50. Narayanan A, Sellers BD, Jacobson MP (2009) Energy-based analysis and prediction of the orientation between light-chain and heavy-chain antibody variable domains. J Mol Biol 388:941–953. doi:10.1016/j.jmb.2009.03.043

    Article  CAS  PubMed  Google Scholar 

  51. Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74:497–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dunbar J, Fuchs A, Shi J, Deane CM (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26:611–620

    Article  CAS  PubMed  Google Scholar 

  53. Abhinandan KR, Martin ACR (2010) Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel 23:689–697

    Article  CAS  PubMed  Google Scholar 

  54. Bujotzek A, Dunbar J, Lipsmeier F et al (2015) Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83:681–695

    Article  CAS  PubMed  Google Scholar 

  55. Krawczyk K, Baker T, Shi J, Deane CM (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26:621–629. doi:10.1093/protein/gzt043

    Article  CAS  PubMed  Google Scholar 

  56. Kunik V, Peters B, Ofran Y (2012) Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol 8:e100238. doi:10.1371/journal.pcbi.1002388

    Article  Google Scholar 

  57. Kunik V, Ashkenazi S, Ofran Y (2012) Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res 40:W521–W524. doi:10.1093/nar/gks480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olimpieri PP, Chailyan A, Tramontano A, Marcatili P (2013) Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics 29:2285–2291. doi:10.1093/bioinformatics/btt369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shirai H, Prades C, Vita R et al (2014) Antibody informatics for drug discovery. Biochim Biophys Acta 1844:2002–2015. doi:10.1016/j.bbapap.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  62. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530. doi:10.1093/nar/gks438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26:599–609

    Article  CAS  PubMed  Google Scholar 

  65. Sela-Culang I, Benhnia MREI, Matho MH et al (2014) Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure 22:646–657. doi:10.1016/j.str.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  66. Krawczyk K, Liu X, Baker T et al (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30:2288–2294. doi:10.1093/bioinformatics/btu190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brenke R, Hall DR, Chuang GY et al (2012) Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics 28:2608–2614. doi:10.1093/bioinformatics/bts493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein docking algorithm. Proteins 1:80–87

    Article  Google Scholar 

  69. Sircar A, Gray JJ (2010) SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol 6:e1000644. doi:10.1371/journal.pcbi.1000644

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37:W474–W479. doi:10.1093/nar/gkp387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte M. Deane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krawczyk, K., Dunbar, J., Deane, C.M. (2017). Computational Tools for Aiding Rational Antibody Design. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation