Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR)

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

Template-assisted propagation of Tau fibrils is essential for the spreading of Tau pathology in Alzheimer’s disease. In this process, small seeds of fibrils recruit Tau monomers onto their ends. The physical properties of the fibrils play an important role in their propagation. Here, we describe two different electron paramagnetic resonance (EPR) techniques that have provided crucial insights into the structure of Tau fibrils. Both techniques rely on the site-directed introduction of one or two spin labels into the protein monomer. Continuous-wave (CW) EPR provides information on which amino acid residues are contained in the fibril core and how they are stacked along the long fibril axis. Double electron–electron resonance (DEER) determines distances between two spin labels within a single protein and hence provides insights into their spatial arrangement in the fibril cross section. Because of the long distance range accessible to DEER (~2–5 nm) populations of distinct fibril conformers can be differentiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  2. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622

    Article  CAS  PubMed  Google Scholar 

  3. Wu JW, Herman M, Liu L et al (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kfoury N, Holmes BB, Jiang H et al (2012) Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. de Calignon A, Polydoro M, Suarez-Calvet M et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed Central  PubMed  Google Scholar 

  6. Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Soto C (2012) Transmissible proteins: expanding the prion heresy. Cell 149:968–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hubbell WL, Lopez CJ, Altenbach C et al (2013) Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 23:725–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Berliner LJ, Grunwald J, Hankovszky HO et al (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem 119:450–455

    Article  CAS  PubMed  Google Scholar 

  10. Torok M, Milton S, Kayed R et al (2002) Structural and dynamic features of Alzheimer’s Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277:40810–40815

    Article  PubMed  Google Scholar 

  11. Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 101:10278–10283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen M, Margittai M, Chen J et al (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282:24970–24979

    Article  CAS  PubMed  Google Scholar 

  13. Jayasinghe SA, Langen R (2004) Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling. J Biol Chem 279:48420–48425

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka M, Chien P, Yonekura K et al (2005) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62

    Article  CAS  PubMed  Google Scholar 

  15. Ngo S, Gu L, Guo Z (2011) Hierarchical organization in the amyloid core of yeast prion protein Ure2. J Biol Chem 286:29691–29699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ladner CL, Chen M, Smith DP et al (2010) Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J Biol Chem 285:17137–17147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cobb NJ, Sonnichsen FD, McHaourab H et al (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104:18946–18951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41:265–297

    Article  CAS  PubMed  Google Scholar 

  19. Bedrood S, Li Y, Isas JM et al (2012) Fibril structure of human islet amyloid polypeptide. J Biol Chem 287:5235–5241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Karyagina I, Becker S, Giller K et al (2011) Electron paramagnetic resonance spectroscopy measures the distance between the external beta-strands of folded alpha-synuclein in amyloid fibrils. Biophys J 101:L1–L3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pornsuwan S, Giller K, Riedel D et al (2013) Long-range distances in amyloid fibrils of alpha-Synuclein from PELDOR spectroscopy. Angew Chem Int Ed Engl 52:10290–10294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Siddiqua A, Luo Y, Meyer V et al (2012) Conformational basis for asymmetric seeding barrier in filaments of three- and four-repeat tau. J Am Chem Soc 134:10271–10278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Meyer V, Dinkel PD, Luo Y et al (2014) Single mutations in tau modulate the populations of fibril conformers through seed selection. Angew Chem Int Ed Engl 53:1590–1593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Eaton GR, Eaton SS, Barr DP, Weber RT (2010) Quantitative EPR. Springer, Wien

    Book  Google Scholar 

  25. Margittai M, Langen R (2006) Spin labeling analysis of amyloids and other protein aggregates. Methods Enzymol 413:122–139

    Article  CAS  PubMed  Google Scholar 

  26. Friedhoff P, von Bergen M, Mandelkow EM et al (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci U S A 95:15712–15717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

  28. Jeschke G, Chechik V, Ionita P et al (2006) DeerAnalysis2006: a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  29. Sen KI, Logan TM, Fajer PG (2007) Protein dynamics and monomer-monomer interactions in AntR activation by electron paramagnetic resonance and double electron-electron resonance. Biochemistry 46:11639–11649

    Article  PubMed  Google Scholar 

  30. Brandon S, Beth AH, Hustedt EJ (2012) The global analysis of DEER data. J Magn Reson 218:93–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Huber M, Lindgren M, Hammarstrom P et al (2001) Phase memory relaxation times of spin labels in human carbonic anhydrase II: pulsed EPR to determine spin label location. Biophys Chem 94:245–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institute of Neurological Disorders and Stroke Grant R01NS076619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Margittai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Meyer, V., Margittai, M. (2016). Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR). In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation