Stimulation of Neurons with Infrared Radiation

  • Chapter
  • First Online:
Biomedical Optics in Otorhinolaryngology

Abstract

The goal for all neuroprostheses is to restore neural function to a condition having the fidelity of a healthy system. However, contemporary neural prostheses are not able to fully achieve this goal. These devices all use electrical current to stimulate the neurons. As determined by the electrode configuration and the electrical tissue properties, the current spreads in the tissue and consequently does not allow precise stimulation of focused neuronal populations, which results in overlap of stimulation fields when neighboring electrode contacts are used. In this book chapter, we present and discuss how photons can be used to overcome some limitations of electrical stimulation. In particular, the content of this text is focused on infrared neural stimulation (INS). Using INS for neural prostheses has its appeal. Many steps are required between technological conception and maturity of an INS-based prosthesis. The steps include biological safety, compatibility, and the engineering of a practicable device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grill WM, Norman SE, Bellamkonda RV. Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng. 2009;11:1–24.

    Article  CAS  PubMed  Google Scholar 

  2. Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J Neurophysiol. 2002;87:478–92.

    PubMed  Google Scholar 

  3. Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. JARO. 2004;5:305–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mens LH, Berenstein CK. Speech perception with mono- and quadrupolar electrode configurations: a crossover study. Otol Neurotol. 2005;26(5):957–64.

    Article  PubMed  Google Scholar 

  5. Srinivasan AG, Landsberger DM, Shannon RV. Current focusing sharpens local peaks of excitation in cochlear implant stimulation. Hear Res. 2010;270(1–2):89–100.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koch DB, Downing M, Osberger MJ, Litvak L. Using current steering to increase spectral resolution in CII and HiRes 90K users. Ear Hear. 2007;28(2 Suppl):38S–41.

    Article  PubMed  Google Scholar 

  7. Berenstein CK, Mens LH, Mulder JJ, Vanpoucke FJ. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear Hear. 2008;29(2):250–60.

    Article  PubMed  Google Scholar 

  8. Choi CT, Hsu CH. Conditions for generating virtual channels in cochlear prosthesis systems. Ann Biomed Eng. 2009;37(3):614–24.

    Article  PubMed  Google Scholar 

  9. Landsberger DM, Srinivasan AG. Virtual channel discrimination is improved by current focusing in cochlear implant recipients. Hear Res. 2009;254(1–2):34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McDermott HJ, McKay CM. Pitch ranking with nonsimultaneous dual-electrode electrical stimulation of the cochlea. J Acoust Soc Am. 1994;96(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  11. Donaldson GS, Dawson PK, Borden LZ. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity. Ear Hear. 2011;32(2):238–50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Veraart C, Grill WM, Mortimer JT. Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans Biomed Eng. 1993;40:640–53.

    Article  CAS  PubMed  Google Scholar 

  13. Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng. 2009;17(5):428–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Veraart C, Raftopoulos C, Mortimer JT, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998;813:181–6.

    Article  CAS  PubMed  Google Scholar 

  15. Larsen JO, Thomsen M, Haugland M, Sinkjaer T. Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol. 1998;96:365–78.

    Article  CAS  PubMed  Google Scholar 

  16. Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26.

    Article  CAS  PubMed  Google Scholar 

  17. Bowman BR, Erickson RC. Acute and chronic implantation of coiled wire intraneural electrodes during cyclical electrical stimulation. Ann Biomed Eng. 1985;13:75–93.

    Article  CAS  PubMed  Google Scholar 

  18. Lefurge T, Goodall E, Horch K, Stensaas L, Schoenberg A. Chronically implanted intrafascicular recording electrodes. Ann Biomed Eng. 1991;19:197–207.

    Article  CAS  PubMed  Google Scholar 

  19. Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt. 2005;10(6):064003.

    Article  PubMed  Google Scholar 

  20. Teudt IU, Nevel AE, Izzo AD, Walsh Jr JT, Richter CP. Optical stimulation of the facial nerve: a new monitoring technique? Laryngoscope. 2007;117(9):1641–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wells J, Kao C, Konrad P, et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J. 2007;93(7):2567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003;31(7):879–90.

    Article  CAS  PubMed  Google Scholar 

  23. Rajguru SM, Richter CP, Matic AI, et al. Infrared photostimulation of the crista ampullaris. J Physiol. 2011;589(Pt 6):1283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Izzo AD, Walsh Jr JT, Ralph H, et al. Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys J. 2008;94(8):3159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F. Infrared light excites cells by changing their electrical capacitance. Nat Commun. 2012;3:736.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Q, Jorgensen E, Holman H, Frerck M, Rabbitt RD. Miniature post synaptic currents are entrained by infrared pulses. Abstr Assoc Res Otolaryngol. 2013;36:464.

    Google Scholar 

  27. Peterson EJ, Tyler DJ. Activation using infrared light in a mammalian axon model. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1896–9.

    PubMed  Google Scholar 

  28. Harteneck C, Plant TD, Schultz G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 2000;23(4):159–66.

    Article  CAS  PubMed  Google Scholar 

  29. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.

    Article  CAS  PubMed  Google Scholar 

  30. Balaban CD, Zhou J, Li HS. Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hear Res. 2003;175(1–2):165–70.

    Article  CAS  Google Scholar 

  31. Zheng J, Dai C, Steyger PS, et al. Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. J Neurophysiol. 2003;90(1):444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suh E, Matic AI, Otting M, Walsh JT, Richter CP. Optical stimulation in mice lacking the TRPV1 channel. Proc Soc Photo Opt Instrum Eng. 2009;7180:1–5.

    Google Scholar 

  33. Albert ES, Bec JM, Desmadryl G, et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol. 2012;107(12):3227–34.

    Article  CAS  PubMed  Google Scholar 

  34. Rhee AY, Li G, Wells J, Kao YPY. Photostimulation of sensory neurons of the rat vagus nerve. Proc SPIE. 2008;6854:68540E68541.

    Google Scholar 

  35. Bec JM, Albert ES, Marc I, et al. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers Surg Med. 2012;44(9):736–45.

    Article  PubMed  Google Scholar 

  36. Katz EJ, Ilev IK, Krauthamer V, Kim do H, Weinreich D. Excitation of primary afferent neurons by near-infrared light in vitro. Neuroreport. 2010;21(9):662–6.

    Article  PubMed  Google Scholar 

  37. Hwang SJ, Oh JM, Valtschanoff JG. Expression of the vanilloid receptor TRPV1 in rat dorsal root ganglion neurons supports different roles of the receptor in visceral and cutaneous afferents. Brain Res. 2005;1047(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Jones S, Brody K, Costa M, Brookes SJ. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G983–91.

    Article  CAS  PubMed  Google Scholar 

  39. Farber IC, Grinvald A. Identification of presynaptic neurons by laser photostimulation. Science. 1983;222(4627):1025–7.

    Article  CAS  PubMed  Google Scholar 

  40. Callaway EM, Yuste R. Stimulating neurons with light. Curr Opin Neurobiol. 2002;12(5):587–92.

    Article  CAS  PubMed  Google Scholar 

  41. Eder M, Zieglgansberger W, Dodt HU. Shining light on neurons—elucidation of neuronal functions by photostimulation. Rev Neurosci. 2004;15(3):167–83.

    PubMed  Google Scholar 

  42. Callaway EM, Katz LC. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A. 1993;90(16):7661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Staiger JF, Kotter R, Zilles K, Luhmann HJ. Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res. 2000;37(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  44. Katz LC, Dalva MB. Scanning laser photostimulation: a new approach for analyzing brain circuits. J Neurosci Methods. 1994;54(2):205–18.

    Article  CAS  PubMed  Google Scholar 

  45. Teudt IU, Maier H, Richter CP, Kral A. Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Trans Biomed Eng. 2011;58(6):1648–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Izzo AD, Richter C-P, Jansen ED, Walsh JT. Laser stimulation of the auditory nerve. Laser Surg Med. 2006;38(8):745–53.

    Article  Google Scholar 

  47. Schultz, M., Baumhoff, P., Maier, H., Teudt, I.U., Kruger, A., Lenarz, T., Kral, A. Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomed Opt Express 2012;3:3332–45

    Google Scholar 

  48. Verma RU, Guex AA, Hancock KE, Durakovic N, McKay CM, Slama MC, Brown MC, Lee DJ. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hearing research 2014;310C:69–75.

    Google Scholar 

  49. Baumhoff P, Schultz M, Kallweit N, et al. Midbrain activity evoked by pulsed laser light. In: 2013 Conference on implantable auditory prostheses; 2013. p. 135.

    Google Scholar 

  50. Richter C-P, Bayon R, Izzo AD, Otting M, Suh E, Goyal S, Hotaling J, Walsh Jr., JT. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hear Res 2008;242:42–51.

    Google Scholar 

  51. Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic map** at the cellular level. Science. 1988;240(4857):1328–31.

    Article  CAS  PubMed  Google Scholar 

  52. Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter CP. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt. 2007;12(2):021008.

    Article  PubMed  Google Scholar 

  53. Richter CP, Rajguru SM, Matic AI, et al. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements. J Neural Eng. 2011;8(5):056006.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matic AI, Walsh Jr JT, Richter CP. Spatial extent of cochlear infrared neural stimulation determined by tone-on-light masking. J Biomed Opt. 2011;16(11):118002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Izzo AD, Walsh JT, Jansen ED, et al. Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng. 2007;54(6 Pt 1):1108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walsh Jr JT, Cummings JP. Effect of the dynamic optical properties of water on midinfrared laser ablation. Lasers Surg Med. 1994;15(3):295–305.

    Article  PubMed  Google Scholar 

  57. Banakis RM, Matic AI, Rajguru SM, Richter CP. Optical stimulation of the auditory nerve: effects of pulse shape. Proc SPIE. 2011;7883(788358):1–8.

    Google Scholar 

  58. Goyal V, Rajguru S, Matic AI, Stock SR, Richter CP. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat Rec (Hoboken). 2012;295(11):1987–99.

    Article  Google Scholar 

  59. Matic AI, Robinson AM, Young HK, et al. Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea. PLoS One. 2013;8(3):e58189.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harris DM, Bierer SM, Wells JD, Phillips JO. Optical nerve stimulation for a vestibular prosthesis. Proc SPIE. 2009;7180:71800R.

    Article  Google Scholar 

  61. Rajguru SM, Rabbitt RR, Matic AI, Highstein SM, Richter CP. Selective activation of vestibular hair cells by infrared light. In: Biophysical Society 54th annual meeting. San Fransisco, CA: Biophysical Society; 2010.

    Google Scholar 

  62. Rajguru SM, Rabbitt RR, Matic AI, Highstein SM, Richter CP. Inhibitory and excitatory vestibular afferent responses induced by infrared light stimulation of hair cells. In: 33rd Midwinter meeting. Anaheim, CA: Association for Research in Otolaryngology; 2010.

    Google Scholar 

  63. Rabbitt RD, Boyle R, Highstein SM. Mechanical indentation of the vestibular labyrinth and its relationship to head rotation in the toadfish, Opsanus tau. J Neurophysiol. 1995;73(6):2237–60.

    CAS  PubMed  Google Scholar 

  64. Holstein GR, Martinelli GP, Boyle R, Rabbitt RD, Highstein SM. Ultrastructural observations of efferent terminals in the crista Ampullaris of the toadfish, opsanus tau. Exp Brain Res. 2004;155(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  65. Holstein GR, Rabbitt RD, Martinelli GP, Friedrich Jr VL, Boyle RD, Highstein SM. Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses. Proc Natl Acad Sci U S A. 2004;101(44):15766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boutros PJ, Ahn J, Fridman GY, Dai C, Lasker D, DC DS. Vestibulo-ocular reflex eye movement responses to infra-red laser stimulation of the mammalian labyrinth. Abstr Assoc Res Otolaryngol 2013;36:255.

    Google Scholar 

  67. Hanekom JJ, Shannon RV. Gap detection as a measure of electrode interaction in cochlear implants. J Acoust Soc Am. 1998;104(4):2372–84.

    Article  CAS  PubMed  Google Scholar 

  68. Fried NM, Lagoda GA, Scott NJ, Su LM, Burnett AL. Laser stimulation of the cavernous nerves in the rat prostate, in vivo: optimization of wavelength, pulse energy, and pulse repetition rate. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2777–80.

    PubMed  Google Scholar 

  69. Kim HL, Stoffel DS, Mhoon DA, Brendler CB. A positive caver map response poorly predicts recovery of potency after radical prostatectomy. Urology. 2000;56(4):561–4.

    Article  CAS  PubMed  Google Scholar 

  70. Holzbeierlein J, Peterson M, Smith JJ. Variability of results of cavernous nerve stimulation during radical prostatectomy. J Urol. 2001;165(1):108–10.

    Article  CAS  PubMed  Google Scholar 

  71. Fried NM, Lagoda GA, Scott NJ, Su LM, Burnett AL. Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. J Endourol. 2008;22(3):409–13.

    Article  PubMed  Google Scholar 

  72. Tozburun S, Cilip CM, Lagoda GA, Burnett AL, Fried NM. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications. J Biomed Opt. 2010;15(5):055012.

    Article  PubMed  Google Scholar 

  73. Tozburun S, Stahl CD, Hutchens TC, Lagoda GA, Burnett AL, Fried NM. Continuous-wave infrared subsurface optical stimulation of the rat prostate cavernous nerves using a 1490-nm diode laser. Urology. 2013;82(4):969–73.

    Article  PubMed  Google Scholar 

  74. Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 μm region. Appl Opt. 1973;12:555–63.

    Article  CAS  PubMed  Google Scholar 

  75. Tozburun S, Lagoda GA, Burnett AL, Fried NM. Subsurface near-infrared laser stimulation of the periprostatic cavernous nerves. J Biophotonics. 2012;5(10):793–800.

    Article  PubMed  Google Scholar 

  76. Tozburun S, Hutchens TC, McClain MA, Lagoda GA, Burnett AL, Fried NM. Temperature-controlled optical stimulation of the rat prostate cavernous nerves. J Biomed Opt. 2013;18(6):067001.

    Article  PubMed  Google Scholar 

  77. Cayce JM, Friedman RM, Jansen ED, Mahavaden-Jansen A, Roe AW. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage. 2011;57(1):155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage. 2013;84C:181–90.

    Google Scholar 

  79. Wininger FA, Schei JL, Rector DM. Complete optical neurophysiology: toward optical stimulation and recording of neural tissue. Appl Opt. 2009;48(10):218–24.

    Article  Google Scholar 

  80. Smith NI, Kumamoto Y, Iwanaga S, Ando J, Fujita K, Kawata S. A femtosecond laser pacemaker for heart muscle cells. Opt Express. 2008;16(12):8604–16.

    Article  CAS  PubMed  Google Scholar 

  81. Dittami GM, Rajguru SM, Lasher RA, Hitchcock RW, Rabbitt RD. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J Physiol. 2011;589(Pt 6):1295–306.

    Article  CAS  PubMed  Google Scholar 

  82. Jenkins MW, Duke AR, Gu S, et al. Optical pacing of the embryonic heart. Nat Photonics. 2010;4:623–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okunade O, Santos-Sacchi J. IR laser-induced perturbations of the voltage-dependent solute carrier protein SLC26a5. Biophys J. 2013;105(8):1822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duke AR, Cayce JM, Malphrus JD, Konrad P, Mahadevan-Jansen A, Jansen ED. Combined optical and electrical stimulation of neural tissue in vivo. J Biomed Opt. 2009;14(6):060501.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bostock H, Rothwell JC. Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol. 1997;498(Pt 1):277–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duke AR, Lu H, Jenkins MW, Chiel HJ, Jansen ED. Spatial and temporal variability in response to hybrid electro-optical stimulation. J Neural Eng. 2012;9(3):036003.

    Article  PubMed  Google Scholar 

  87. Thompson AC, Wade SA, Brown WG, Stoddart PR. Modeling of light absorption in tissue during infrared neural stimulation. J Biomed Opt. 2012;17(7):075002.

    Article  PubMed  Google Scholar 

  88. Thompson AC, Wade SA, Cadusch PJ, Brown WG, Stoddart PR. Modeling of the temporal effects of heating during infrared neural stimulation. J Biomed Opt. 2013;18(3):035004.

    Article  PubMed  Google Scholar 

  89. Thompson A, Wade S, Pawsey N, Stoddart P. Infrared neural stimulation: influence of stimulation site spacing and repetition rates on heating. IEEE Trans Biomed Eng. 2013;60(12):3534–41.

    Article  PubMed  Google Scholar 

  90. Liljemalm R, Nyberg T, von Holst H. Heating during infrared neural stimulation. Lasers Surg Med. 2013;45(7):469–81.

    Article  PubMed  Google Scholar 

  91. Norton BJ, Bowler MA, Wells JD, Keller MD. Analytical approaches for determining heat distributions and thermal criteria for infrared neural stimulation. J Biomed Opt. 2013;18(9):98001.

    Article  Google Scholar 

  92. Brummer SB, Robblee LS, Hambrecht FT. Criteria for selecting electrodes for electrical stimulation: theoretical and practical considerations. Ann N Y Acad Sci. 1983;405:159–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project has been funded with federal funds from the National Institute on Deafness and Other Communication Disorders, R01 DC011855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Peter Richter M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, K., Tan, X., Young, H., Richter, CP. (2016). Stimulation of Neurons with Infrared Radiation. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation