Stable Isotope Labeling by Amino Acids Applied to Bacterial Cell Culture

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

  • 5433 Accesses

Abstract

Stable isotope labeling by amino acids in cell culture (SILAC) is a widely used approach in quantitative proteomics; however, due to limitations such as required auxotrophy for the amino acids employed for labeling, it was thus far rarely employed in bacteria. Although limitations of SILAC in microbiological applications are significant and restrict its use exclusively to cells cultured in minimal media, we and others have successfully used it to fully label proteomes of model bacteria and measure their relative expression dynamics under different experimental conditions. Here we provide a brief overview of applications of SILAC in bacteria and describe a detailed protocol for SILAC labeling of Escherichia coli and Bacillus subtilis cells in culture, which in many cases can be applied to other members of both gram-positive and gram-negative bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seraphin B, Hettich R (2012) Microbial proteomics: the quiet revolution. Curr Opin Microbiol 15(3):348–350

    Article  PubMed  Google Scholar 

  2. Iwasaki M, Miwa S, Ikegami T et al (2010) One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal Chem 82(7):2616–2620

    Article  CAS  PubMed  Google Scholar 

  3. Otto A, Bernhardt J, Hecker M et al (2012) Global relative and absolute quantitation in microbial proteomics. Curr Opin Microbiol 15(3):364–372

    Article  CAS  PubMed  Google Scholar 

  4. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    Article  CAS  PubMed  Google Scholar 

  5. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    Article  CAS  PubMed  Google Scholar 

  6. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  7. Dreisbach A, Otto A, Becher D et al (2008) Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Proteomics 8(10):2062–2076

    Article  CAS  PubMed  Google Scholar 

  8. Otto A, Bernhardt J, Meyer H et al (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137

    Article  PubMed Central  PubMed  Google Scholar 

  9. Schutz W, Hausmann N, Krug K et al (2011) Extending SILAC to proteomics of plant cell lines. Plant Cell 23(5):1701–1705

    Article  PubMed Central  PubMed  Google Scholar 

  10. Soufi B, Kumar C, Gnad F et al (2010) Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res 9(7):3638–3646

    Article  CAS  PubMed  Google Scholar 

  11. Geiger T, Wisniewski JR, Cox J et al (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6(2):147–157

    Article  CAS  PubMed  Google Scholar 

  12. Schwanhausser B, Gossen M, Dittmar G et al (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9(1):205–209

    Article  PubMed  Google Scholar 

  13. Doherty MK, Hammond DE, Clague MJ et al (2009) Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8(1):104–112

    Article  CAS  PubMed  Google Scholar 

  14. Bendall SC, Hughes C, Stewart MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7(9):1587–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lossner C, Warnken U, Pscherer A et al (2011) Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem 412(1):123–125

    Article  PubMed  Google Scholar 

  16. Frohlich F, Christiano R, Walther TC (2013) Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. Mol Cell Proteomics 12(7):1995–2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  20. Stulke J, Hanschke R, Hecker M (1993) Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139(9):2041–2045

    Article  CAS  PubMed  Google Scholar 

  21. Kirchner M, Selbach M (2012) In vivo quantitative proteome profiling: planning and evaluation of SILAC experiments. Methods Mol Biol 893:175–199

    Article  CAS  PubMed  Google Scholar 

  22. Tyanova S, Mann M, Cox J (2014) MaxQuant for In-Depth Analysis of Large SILAC Datasets. In:Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC), Warscheid B (ed) 1188: 351–364

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Alejandro Carpy and the other PCT members for useful comments on the manuscript. Our work is financed by the Juniorprofessoren-Programm of the Landesstiftung BW, the SFB766 of the Deutsche Forschungsgemeinschaft, and PRIME-XS consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Macek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Soufi, B., Macek, B. (2014). Stable Isotope Labeling by Amino Acids Applied to Bacterial Cell Culture. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation