Fusion-Permissive Protoplasts

A Plant System for Studying Cell Fusion

  • Chapter
Cell Fusion
  • 217 Accesses

Abstract

While artificial systems are useful for delineating the fusogenic properties of specific lipids or proteins, they cannot encompass the complexity of A. living cell membrane. To address basic questions such as what renders the plasma membrane fusion permissive and what regulates the fusion permissive state in vivo, A. highly fusion permissive system was needed. Since under nonpathological conditions there are only A. few times in the life of an organism in which cells are capable of undergoing fusion (e.g., fertilization and muscle maturation), few model systems are available. A. new method has been developed for culturing cells of wild carrot (Daucus carotaL.), so that they yield fusogenic or fusion permissive protoplasts (Boss et al, 1984a). The fusion yield (fused protoplasts/fused + nonfused protoplasts) is greater than 50%. Fusion is calcium stimulated, enhanced by the calcium ionophore, A23187, and inhibited by EGTA and calmodulin antagonists (Boss and Grimes, 1985; Grimes and Boss, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akazawa, T., and Mitsui, T., 1985, Biosynthesis, intracellular transport, and secretion of a-amylase in rice seedlings, in: New Approaches to Research on Cereal Carbohydrates (R. D. Hill and L. Munck, eds.), pp. 129–137, Elsevier, Amsterdam.

    Google Scholar 

  • Bergen, W. G., and Bates, D. B., 1984, Ionophores: Their effect on production efficiency and mode of action,J. Anim. Sci.58(6): 1465–1483.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, A. novel second messenger in cellular signal transduction, Nature (Lond.) 312:315–321.

    Article  CAS  Google Scholar 

  • Billah, M. M., and Lapetina, E. G., 1982a, Degradation of phosphatidylinositol-4,5-bisphos-phate is insensitive to Ca2+mobilization in stimulated platelets, Biochem. Biophys. Res. Commun.109:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M. M., and Lapetina, E. G., 1982, Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187, J. Biochem. Chem. 257(9):5196–5200.

    CAS  Google Scholar 

  • Bloj, B., and Zilversmit, D. B., 1981, Lipid transfer proteins in the study of artificial and natural membranes, Mol. Cell. Biochem.40:163–172.

    Article  PubMed  CAS  Google Scholar 

  • Boss, W. F., 1983, Poly(ethylene-glycol)-induced fusion of plant protoplasts: A. spin-label study, Biochim. Biophys. Acta 730:111–118.

    Article  CAS  Google Scholar 

  • Boss, W. F., 1986, Glycerol lipid metabolism: The effects of cell wall digestion on fusogenic protoplasts, submitted.

    Google Scholar 

  • Boss, W. F., and Brightman, A. O., 1984, Protoplast lipid turnover during wall digestion and in response to the fusogen calcium, Plant Physiol. (Suppl.) 75(1):257.

    Article  Google Scholar 

  • Boss, W. F., and Grimes, H. D., 1985, Dynamics of calcium-induced fusion of fusogenic carrot protoplates, in: Beltsville Symposia on Agricultural Research. Vol. IX Frontiers of Membrane Research in Agriculture(J. St. John, P. Jackson, and E. Berlin, eds.), pp. 63–68, Row-man Allanheld, Totowa, New Jersey.

    Google Scholar 

  • Boss, W. F., and Massel, M. O., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun.132(3): 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  • Boss, W. F., Grimes, H. D., and Brightman, A. O., 1984a, Calcium-induced fusion of fusogenic wild carrot protoplasts, Protoplasma 120:209–215.

    Article  Google Scholar 

  • Boss, W. F., Morré, D. J., and Mollenhauer, H. H., 1984; Monensin-induced swelling of Golgi apparatus cisternae mediated by A. proton gradient, Eur. J. Cell Biol.214:77–82.

    Google Scholar 

  • Brightman, A. O., Boss, W. F., and Morré, D. J., 1985, An atypical response of some Golgi apparatus of carrot protoplasts to the sodium-selective ionophore monensin, Plant Physiol. (Suppl.) 77(4):388.

    Google Scholar 

  • Buckhout, T. J., Young, K. A., Low, P. S., and Morré, D. J., 1981, In vitro promotion by auxins by divalent ion release from soybean membranes, Plant Physiol.68(2):512–515.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with A. planar phospholipid bilayer membrane, Science 217:458–460.

    Article  PubMed  CAS  Google Scholar 

  • Cruetz, C. E., and Pollard, H. B., 1983, Development of A. cell-free model for compound ex-ocytosis using components of the chromaffin cell, J. Autonomic Nerv. Sys.7:13–18.

    Article  Google Scholar 

  • Den, H., 1985, Effect of monensin on myoblast fusion, Biochem. Biophys. Res. Commun.126(1):313–319.

    Article  PubMed  CAS  Google Scholar 

  • Dieter, P., 1984, Calmodulin and calmodulin-mediated processes in plants, Plant Cell Environ.7:371–380.

    Article  CAS  Google Scholar 

  • Drobak, B. K., and Ferguson, I. B., 1985, Release of calcium from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate, Biochem. Biophys. Res. Commun.130:1241–1246.

    Article  PubMed  CAS  Google Scholar 

  • Dubacq, J.-P., Drapier, D., Tremolieres, A., and Kader, J.-C., 1984, Role of phospholipid transfer protein in the exchange of phospholipids between microsomes and chloro-plasts, Plant Cell Physiol.25.(7): 1197–1204.

    CAS  Google Scholar 

  • Düzgünes, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642:182–195.

    Article  PubMed  Google Scholar 

  • Fain, J. N., and Berridge, M. J., 1979, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca++flux in blowfly salivary glands Biochem. J.180:655–661.

    PubMed  CAS  Google Scholar 

  • Feirer, R., Mignon, G., and Litvay, J. D., 1984, Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot, Science 223:1433–1435.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, L. R., and Parker, N. S., 1984, Osmotic control of bilayer fusion, Biophys. J.46:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons, P. J., and Weyers, J. D. B., 1985, Properties of some enzymes used for protoplast isolation, in: The Physiological Properties of Plant Protoplasts (P. E. Pilet, ed.), pp. 12–23, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Fraley, R., Wilschut, J., Düzgünes, N., Smith, C., and Papahadjopoulas, D., 1980, Studies on the mechanism and membrane fusion: Role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles, Biochemistry 19:6021–6029.

    Article  PubMed  CAS  Google Scholar 

  • Galun, E., 1981, Plant protoplasts as physiological tools, Annu. Rev. Plant Physiol.32:237–266.

    Article  CAS  Google Scholar 

  • Gomperts, B. D., 1984, Calcium and cellular activation, in: Biological Membranes Vol. 5 (D. Chapman, ed.), pp. 290–320, Academic Press, London.

    Google Scholar 

  • Grimes, H. D., 1985, The role of calcium fluxes, calmodulin, polyamines in the regulation of calcium-induced plasma membrane fusion in fusogenic protoplasts, Ph.D. thesis at North Carolina State University, Raleigh.

    Google Scholar 

  • Grimes, H. D., and Boss, W. F., 1985, Intracellular calcium and calmodulin involvement in protoplast fusion, Plant Physiol.79:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Grimes, H. D., Slocum, R. D., and Boss, W. F., 1985, a-Difluoromethylarginine treatment inhibits protoplast fusion in fusogenic wild carrot protoplasts, Biochim. Biophys. Acta 886:130–134.

    Article  Google Scholar 

  • Gumber, S. C., Loewus, M. W., and Loewus, F. A., 1984, Further studies on myoinositol-1-phosphatase from the pollen of Lilium longiflorum Thunb, Plant Physiol 76:40–44.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J. B., 1984, The functions of calcium in plant nutrition, in: Advances in Plant Nutrition, Vol. 1 (P. B. Tinker and A. Lauchli, eds.), pp. 149–208, Praeger, New York.

    Google Scholar 

  • Hartmann, E., and Hock, K., 1985, Fatty acids in protoplasts, in: The Physiological Properties of Plant Protoplasts (P. E. Pilet, ed.), pp. 190–199, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Helsper, H. P., de Groot, P. F., Jackson, J. F., and Linskens, H. F., 1985, Phosphatidylinositol phosphodiesterase in lily pollen, Plant Physiol (Suppl) 77(4):533.

    Google Scholar 

  • Hepler, P. K., and Wayne, R. O., 1985, Calcium and plant development, Annu. Rev. Plant Physiol 36:397–439.

    Article  CAS  Google Scholar 

  • Hetherington, A. M., and Trewavas, A., 1984, Activation of A. pea membrane protein kinase by calcium ions, Planta 161:409–417.

    Article  CAS  Google Scholar 

  • Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem.54:205–235.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, AI, and Dawson, R. M. C., 1980, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J.192:279–283.

    PubMed  CAS  Google Scholar 

  • Jones, L. M., and Michell, R. H., 1974, Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragment, Biochem. J.142:583–590.

    PubMed  CAS  Google Scholar 

  • Jones, R. L., and Carbonell, J., 1984, Regulation of the synthesis of barley aleurone a-amylase by gibberellic acid and calcium ions, Plant Physiol.76:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Kanchanapoom, K., and Boss, W. F., 1986, Osmoregulation of fusogenic protoplast fusion, Biochim. Biophys. Acta 861:429–439.

    Article  CAS  Google Scholar 

  • Kanchanapoom, K., Grimes, H. D., Brightman, A. O., and Boss, W. F., 1985, A. novel method for monitoring protoplast fusion, Protoplasma 124:65–70.

    Article  Google Scholar 

  • Kevers, C., Sticher, L., Penel, C., Greppin, H., and Gaspar, Th., 1982, Calcium-controlled peroxidase secretion by sugarbeet cell suspensions in relation to habituation, Plant Growth Regul 1:61–66.

    Article  CAS  Google Scholar 

  • Kleinig, H., Hara, S., and Schuchmann, R., 1982, Lipid metabolism in plant tissue culture cells. Acetate incorporation; triacylglycerol accumulation, in: Proceedings of the Fifth International Congress of Plant Tissue and Cell Culture (Plant Tissue Culture, 1982), pp. 257–258, Japanese Association for Plant Tissue Culture, Tokyo.

    Google Scholar 

  • Kleinig, H., and Kopp, C., 1978, Lipids, lipid turnover, and phospholipase D in plant suspension culture cells (Daucus), Biophys. Acta 773:99–105.

    Google Scholar 

  • Laychock, S. G., and Putney, J. W., Jr., 1982, Roles of phospholipid metabolism in secretory cells, in: Cellular Regulation of Secretion and Release (P. Michael Conn, ed.), pp. 53–105, Academic Press, New York.

    Google Scholar 

  • Ledger, P. W., and Tänzer, M. L., 1984, Monensin—A perturbant of cellular physiology, Trends Biochem. Sci.9(7):313–314.

    Article  CAS  Google Scholar 

  • Lucy, J. A., 1978, Mechanisms of chemically induced cell fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 267–304, Elsevier/North-Holland, New York.

    Google Scholar 

  • Majerus, P. W., Neufeld, E. J., and Wilson, D. B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701–703.

    Article  PubMed  CAS  Google Scholar 

  • Moore, T. S., Jr., 1977, Phospholipid turnover in soybean tissue cultures, Plant Physiol.60:754–758.

    Article  PubMed  CAS  Google Scholar 

  • Morré, D. J., Morré, J. T., and Varnold, R. L., 1984a, Phosphorylation of membrane-located proteins of soybean in vitro and response to auxin, Plant Physiol 75:265–268.

    Article  PubMed  Google Scholar 

  • Morré, D. J., Gripshover, B., Monroe, A., and Morré, J. T., 1984b, Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4-dichlorophenoxyacetic acid, J. Biol. Chem. 259:15346–15368.

    Google Scholar 

  • Nishizuka, Y., 1984, Turnover of inositol phospholipids and signal transduction, Science 225:1365–1370.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., 1978, Calcium-induced phase changes and fusion in natural and model membranes, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 765–790, Elsevier, New York.

    Google Scholar 

  • Ranjeva, R., Graziana, A., Ranty, B., Cavalie, G., and Boudet, A. M., 1984, Phosphorylation of proteins in plants: A. step in the integration of extra and intracellular stimuli?, Physiol Veg.22(3):365–376.

    CAS  Google Scholar 

  • Roos, D. S., and Choppin, P. W., 1985a, Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells, J. Cell Biol 101(4): 1578–1590.

    Article  PubMed  CAS  Google Scholar 

  • Roos, D. S., and Choppin, P. W., 1985b, Biochemical studies on cell fusion. II. Control of fusion response by lipid alterations, J. Cell Biol 101(4):1591–1598.

    Article  PubMed  CAS  Google Scholar 

  • Sandra, A., and Ionasescu, V. V., 1980, Alterations in lipid turnover in develo** muscle, Biochem. Biophys. Res. Commun.93(3):898–905.

    Article  PubMed  CAS  Google Scholar 

  • Sexton, J. C., and Moore, T. S., Jr., 1981, Phosphatidylinositol synthesis by A. Mn2+-dependent exchange enzyme in castor bean endosperm, Plant Physiol.68:18–22.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, D. H., Setterfield, G., and Brown, D. L., 1983, Reorganization of microtubules in protoplasts of Vicia Hajastana, Grossh. During the first 48 hours of culturing, in: Sixth International Protoplast Symposium, Basel, Switzerland, pp. 212–213.

    Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, T., 1983, Release of Ca2+from A. nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphos-phate, Nature (Lond.) 306:67–68.

    Article  CAS  Google Scholar 

  • Sze, H., 1985, H+-translocating ATPases: Advances using membrane vesicles, Annu. Rev. Plant Physiol.36:175–208.

    Article  CAS  Google Scholar 

  • Taylor, A. R. D., and Hall, J. L., 1978, Fine structure and cytochemical properties of tobacco leaf protoplasts and comparison with the source tissue, Protoplasma 96:113–126.

    Article  Google Scholar 

  • Wakelam, M. J. O., 1983, Inositol phospholipid metabolism and myoblast fusion, Biochem. J.214:77–82.

    PubMed  CAS  Google Scholar 

  • Wakelam, M. J. O., and Pette, D., 1984, Myoblast fusion and inositol phospholipid breakdown: Causal relationship or coincidence?, in: Cell Fusion(Ciba Foundation Symposium 103), pp. 100–108, Pitman, London.

    Google Scholar 

  • Webb, M. S., and Williams, J. P., 1984, Changes in the lipid and fatty acid composition of Vicia fabamesophyll protoplasts induced by isolation, Plant Cell Physiol.25(8): 1541–1550.

    CAS  Google Scholar 

  • Wetherell, D. F., 1969, Phytochrome in cultured wild carrot tissue, I. Synthesis, Plant Physiol.44:1734–1737.

    Article  PubMed  CAS  Google Scholar 

  • Wetherell, D. F., and Dougall, D. K., 1976, Sources of nitrogen supporting growth and em-bryogenesis in cultured wild carrot tissue, Physiol Plant.37:97–103.

    Article  CAS  Google Scholar 

  • Wilkinson, M. J., and Northcote, D. H., 1980, Plasma membrane ultrastructure during protoplast plasmolysis, isolation and wall regeneration: A. freeze fracture study, J. Cell Sci.42:401–410.

    PubMed  CAS  Google Scholar 

  • Zimmerberg, J., and Whitaker, M., 1985, Irreversible swelling of secretory granules during ex-ocytosis caused by calcium, Nature (Lond.) 315:581–584.

    Article  CAS  Google Scholar 

  • Zimmermann, U., and Vienken, J., 1982, Electric field-induced cell-to-cell fusion, J. Membrane Biol.67:165–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boss, W.F. (1987). Fusion-Permissive Protoplasts. In: Sowers, A.E. (eds) Cell Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9598-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9598-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9600-1

  • Online ISBN: 978-1-4757-9598-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation