River Epilithon — A Light and Organic Energy Transducer

  • Chapter
Perspectives in Running Water Ecology

Abstract

The energy pathways within running water systems have been the focus of many river ecologists since Noel Hynes’ paper on “Imported organic matter and secondary productivity in streams” (Hynes, 1963). This paper emphasized the role played by allochthonous organic energy sources to the overall energy economy of a river reach and spawned a massive research effort on this topic (see Anderson and Sedell, 1979; Cummins and Klug, 1979; Dance, Chapter 3; Bird and Kaushik, Chapter 2). However, lately a view of running waters has been put forward by Vannote and his colleagues (Vannote et al., 1980) where the relative importance of light energy over organic energy to rivers and streams is considered to be variable in time and space both within and between rivers. Such a perspective is an appropriate starting point for this chapter, since the epilithon, the heterogeneous slime community coating all submerged rock surfaces in rivers, has the capacity (in many instances) to process both light and organic energy simultaneously. It is important to remember from the outset that the epilithon is a mixed community of bacteria, fungi, algae, protozoa and micrometazoa, and although algae may at times apparently dominate the epilithon, at such times it will still contain a well developed heterotrophic community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albright, L.J. 1980. Microbial dynamics of two sub-arctic Canadian Rivers. Wat. Res. 14: 1353–1362.

    Article  Google Scholar 

  • Allanson, B.R. 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte — periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwat. Biol. 3: 535–542.

    Google Scholar 

  • Anderson, N.H. and Sedell, J.R. 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24: 351–377.

    Article  Google Scholar 

  • Allan, H.L. 1976. Dissolved organic matter in lake water: characteristics of molecular size fractions and ecological implications. Oikos 27: 64–70.

    Article  Google Scholar 

  • Barton, D.R. and Lock, M.A. 1979. Numerical abundance and biomass of bacteria, algae and macrobenthos of a large northern river, the Athabasca. Int. Revue ges. Hydrobiol. 64(3): 345–359.

    Article  Google Scholar 

  • Berman, T. 1976. Release of DOM by photosynthesizing algae in Lake Kinneret, Israel. Freshwat. Biol. 6: 13–18.

    Article  CAS  Google Scholar 

  • Bombowna, M. 1977. Biocoenosis of a high mountain stream under the influence of tourism I Chemistry of the Rybi Potok waters and the chlorophyll content in attached algae and seston in relation to pollution. Acta Hydrobiol. 19(3): 243–255.

    CAS  Google Scholar 

  • Burns, R.G. 1979. Interactions of microorganisms, their substrates and their products with soil surfaces. In: “Adhesion of Microorganisms to surfaces”, Ellwood, D.C., Melling, J. and Rutter, P. eds. Society for General Microbiology, Academic Press, London.

    Google Scholar 

  • Burns, R.G. (ed) 1978. Soil Enzymes. Academic Press, London.

    Google Scholar 

  • Bungay, H.R., Whalen, W.J. and Sanders, W.M. 1969. Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotechnol. Bioeng. 11: 765–772.

    Article  Google Scholar 

  • Cairns, J. Jr. and Yongue, W.H. Jr. 1977. Factors affecting the number of species in freshwater protozoan community. In: “Aquatic Microbial Communities”. Cairns, J. Jr. ed. Garland Publishing Inc., N.Y.

    Google Scholar 

  • Chang, T.P. 1980. Mucilage sheath as a barrier to carbon uptake in a cyanophyte Oscillatoria rubescens. Arch. Hydrobiol. 88: 128–133.

    Google Scholar 

  • Clifford, H.F. 1969. Limnological features of a northern brownwater stream with special reference to life histories of aquatic insects. Am. midl. Nat. 82: 578–597.

    Article  Google Scholar 

  • Cooke, W.B. 1979. “The ecology of fungi”. CRC Press Inc., Florida.

    Google Scholar 

  • Costerton, J.W., Geesey, G.G. and Cheng, K.J. 1978. How bacteria stick. Sci. Am. 238(1): 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Cummins, K.W., Klug, J.J., Wetzel, R.G., Petersen, R.C., Subertropp, K.F., Manny, B.A., Wuychechk, J.C. and Howard, F.O. 1972. Organic enrichment with leaf leachate in experimental lotic ecosystems. Bio Science 22(12): 719–722.

    Google Scholar 

  • Cummins, K.W. and Klug, M.J. 1979. Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst. 10: 147–172.

    Article  Google Scholar 

  • Dahm, C.N. 1981. Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams. Can. J. Fish. Aquat. Sci. 38: 68–76.

    Article  CAS  Google Scholar 

  • De Haan, H. 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • Dudman, W.F. 1977. The role of surface polysaccharides in natural environments. In: “Surface Carbohydrates of the Prokaryotic Cell”. Sutherland, I. ed. Academic Press, London.

    Google Scholar 

  • Dugan, P.R., Pfister, R.M. and Frea, J.I. 1971. Implications of microbial polymer synthesis in waste treatment and lake eutrophication. In: “Advances in Water Pollution Research, Vol. 2”. Jenkins, S.H. ed. III-20-III-20/10.

    Google Scholar 

  • Dunstall, T.G. and Nalewajko, C. 1975. Extracellular release in planktonic bacteria. Verh. Internat. Verein. Limnol. 19: 2643–2649.

    Google Scholar 

  • Edelmann, W. and Wuhrmann, K. 1978. Energy of running water systems. Verh. Internat. Verein. Limnol. 20: 1800–1805.

    Google Scholar 

  • Faust, M.A. and Correll, D.L. 1977. Autoradiographic study to detect metabolically active phytoplankton and bacteria in the Rhode River Estuary. Mar. Biol. 41: 293–305.

    Article  CAS  Google Scholar 

  • Fenchel, T. 1977. The significance of bactiverous protozoa in the microbial community of detrital particles. In: “Aquatic Microbial Communities”, Cairns, J. ed. Garland Publishing Inc., N.Y.

    Google Scholar 

  • Finlay, B.J., Laybourn, J. and Strachan, I. 1979. A technique for the enumeration of benthic ciliated protozoa. Oecologia 39: 375–377.

    Article  Google Scholar 

  • Fisher, S.G. 1977. Organic matter processing by a stream segment ecosystem, Fort River, Massachusetts, U.S.A. Int. Revue ges. Hydrobiol. 62(6): 701–727.

    Article  Google Scholar 

  • Fisher, S.G. and Likens, G.E. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Article  Google Scholar 

  • Fletcher, M. 1980. Adherence of marine micro-organisms to smooth surfaces. In: “Bacterial Adherence” Beachey E.H. ed. Chapman and Hall, London.

    Google Scholar 

  • Fogg, G.E. 1966. The extracellular products of algae. Ooeanogr. Mar. Biol. Annv. Rev. 4: 195–212.

    CAS  Google Scholar 

  • Fogg, G.E. 1977. Excretion of organic matter by phytoplankton. Lirmol. Oceanogr. 22(3): 576–577.

    Article  CAS  Google Scholar 

  • Fogg, G.E., Nalewajko, C. and Watt, W.D. 1965. Extracellular products of phytoplankton photosynthesis. Proc. R. Soc. Lond. Ser. B 162: 517–534.

    Article  CAS  Google Scholar 

  • Geesey, G.G., Richardson, W.T., Yeomans, H.G., Irvin, R.T. and Costerton, J.W. 1977. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 23: 1733–1736.

    Article  PubMed  CAS  Google Scholar 

  • Geesey, G.G., Mutch, R., Costerton, J.W. and Green, R.B. 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Ooeanogr. 23(6): 1214–1223.

    Article  CAS  Google Scholar 

  • Gerlach, S.A. 1978. Food chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33: 55–69.

    Article  Google Scholar 

  • Hellebust, J.A. 1974. Extracellular products. In: “Algal physiology and Biochemistry”. Stewart, W.D. ed. Univ. of California Press.

    Google Scholar 

  • Hickman, M., Charlton, S.E.D., and Jenkerson, C.G. 1980. A comparative study of benthic algal primary productivity in the AOSERP study area. Alberta Oilsands Environmental Research Program, Project WS 1.3.4. Edmonton 133 pp.

    Google Scholar 

  • Hynes, H.B.N. 1963. Imported organic matter and secondary productivity in streams. Int. Congr. Zool. 16, 4: 324–329.

    Google Scholar 

  • Hynes, H.B.N. 1970. The ecology of running waters. Liverpool University Press, Liverpool.

    Google Scholar 

  • Johansson, C., Kronborg, L. and Thomasson, K. 1977. Attached algal vegetation in running waters. Excerpta botanica SectionB 16: 126–178.

    Google Scholar 

  • Jones, E.B.G. (ed.) 1976. “Recent advances in aquatic mycology”. Elek Science. London.

    Google Scholar 

  • Jones, H.C., Roth, I.L. and Sanders, W.M. 1969. Electron microscopic study of a slime layer. J. Bact. 99: 316–325.

    PubMed  CAS  Google Scholar 

  • Karlstrom, U. 1978. Role of the organic layer on stones in detrital metabolism in streams. Verh. Internat. Verein. Limnol. 20: 1463–1470.

    Google Scholar 

  • Kaushik, N.K. and Hynes, H.B.N. 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Ladd, J.N. and Butler, J.H.S. 1975. Humus-enzyme systems and synthetic organic polymer analogs. In: “Social Biochemistry, Vol. 4”. Paul, E.A. and McLaren, A.D. eds. Marcel Dekker, New York.

    Google Scholar 

  • Ladd, T.I., Costerton, J.W. and Geesey, G.G. 1979. Determination of the heterotrophic activity of epilithic microbial populations. In: “Native aquatic bacteria: Enumeration, activity, and ecology”. Costerton, J.W. and Colwell, R.R. eds. ASTM STP 695, American Society for Testing and Materials. Philadelphia. 180–195.

    Google Scholar 

  • Ladd, T.I., Read, R., Ventullo, R.M., Wallis, P.M., Telang, S.A. and Costerton, J.W. (In prep.). The microbiology of a mountain stream flowing through a coal mine reclamation project.

    Google Scholar 

  • LaMotta, E.J. 1976. Internal diffusion and reaction in biological films. Environ. Sci. Teehnol. 10(8): 765–769.

    Article  CAS  Google Scholar 

  • Lange, W. 1976. Speculation on a possible essential function of the gelatinous sheath of blue-green algae. Can. J. Microbiol. 22: 1181–1185.

    Article  PubMed  CAS  Google Scholar 

  • Larson, R.A. 1978. Dissolved organic matter of a low coloured stream. Freshwat. Biol. 8: 91–104.

    Article  CAS  Google Scholar 

  • Lehmicke, L.G., Williams, R.T. and Crawford, R.L. 1979. 14C-most probable-number method for estimation of active Heterotrophic microorganisms in natural waters. Appl. Environ. Microbiol. 38: 644–649.

    PubMed  CAS  Google Scholar 

  • Lock, M.A. and Hynes, H.B.N. 1975. The disappearance of four leaf leachates in a hard and soft water stream in South Western, Ontario, Canada. Int. Revue ges. Hydrobiol. 60(6): 847–855.

    Article  Google Scholar 

  • Lock, M.A., Hynes, H.B.N. 1976. The fate of “dissolved” organic carbon derived from autumn-shed maple leaves (Acer saceharum) in a temperate hard-water stream. Limnol. Oceanogr. 21(3): 436–443.

    Article  Google Scholar 

  • Lock, M.A. and John, P.H. 1979. The effect of flow patterns on uptake of phosphorus by river periphyton. Limnol. Oceanogr. 24(2): 376–383.

    Article  CAS  Google Scholar 

  • Lock, M.A. and Wallace, R.R. 1979. Interim report on ecological studies on the lower trophic levels of Muskeg rivers within the Alberta Oil Sands Environmental Research Program (A.O.S.E.R.P.) study area. A.O.S.E.R.P. Report 58: 105 pp. (Paper on this work in preparation).

    Google Scholar 

  • Lock, M.A., Wallace, R.R., Costerton, W., Ventulla, R. and Charlton, S.E. (In prep.) River epilithon — its composition and structure on the upper and lower surfaces of rocks.

    Google Scholar 

  • Lock, M.A.; Wallis, P.M. and Hynes, H.B.N. 1977. Colloidal organic matter in running waters. Oikos 29: 1–4.

    Article  Google Scholar 

  • Lush, D.L. and Hynes, H.B.N. 1978. The uptake of dissolved organic matter by a small spring stream. Hydrobiotogia 60(3): 271–275.

    Article  Google Scholar 

  • Lyford, J.H. and Gregory, S.V. 1975. The dynamics and structure of periphyton communites in three Cascade Mountain streams. Verh. Internat. Verein Limnol. 19: 1610–1616.

    Google Scholar 

  • Mack, W.N., Mack, J.P. and Ackerson, A.O. 1975. Microbial film development in a trickling filter. Microb. Ecol. 2: 215–226.

    Article  Google Scholar 

  • Mackie, E.B., Brown, K.N., Lam, J. and Costerton, J.W. 1979. Morphological stabilization of capsules of group B streptococci, types Ia, Ib, II and III, with specific antibody. J. Bact. 138(2): 609–617.

    PubMed  CAS  Google Scholar 

  • Madsen, B.L. 1972. Detritus on stones in small streams. Mem. Ist. Ital. Idrobiol. Suppl. 29: 385–403.

    Google Scholar 

  • Marker, A.F.H. 1975a. The benthic algae of some streams in southern England. I. Biomass of the epilithon in some small streams. J. Ecol. 64: 343–358.

    Google Scholar 

  • Marker, A.F.H. 1976b. The benthic algae of some streams in southern England. II. The primary production of the epilithon in a small chalk stream. J. Ecol. 64: 359–373.

    Article  CAS  Google Scholar 

  • Matson, J.V. and Charaklis, W.G. 1976. Diffusion into microbial aggregates. Wat. Res. 10: 877–885.

    Article  CAS  Google Scholar 

  • McDowell, W.H. and Fisher, S.G. 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57(3): 561–569.

    Article  Google Scholar 

  • McFeters, G.A. and Dockins, W.S. 1980. Ecology of a benthic microbial community in a high alpine stream. Abstract, Second International Symposium on Microbial Ecology, University of Warwick 7–12 September, 1980.

    Google Scholar 

  • Meyer-Reil, L.A. 1978. Autoradiography and epifluorescent microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. Environ. Microbiol. 36(3): 506–512.

    PubMed  CAS  Google Scholar 

  • Minshall, G.W. 1978. Autotrophy in stream ecosystems. Bio Science 28(12): 767–771.

    Google Scholar 

  • Moore, J.W. 1976. Seasonal succession of algae in rivers. I Examples from the Avon a large slow flowing river, J. Phycol. 12: 342–349.

    Google Scholar 

  • Moore, J.W. 1977. Seasonal succession of algae in rivers II Examples from Highland Water, a small woodland stream. Arch. Eydrobiol. 80(2): 160–171.

    Google Scholar 

  • Nalewajko, C, Dunstall, T.G. and Shear, H. 1976. Kinetics of extracellular release in axenic algae and in mixed algalbacterial cultures: significance in estimation of total (gross) phytoplankton excretion rates. J. Phycol. 12: 1–5.

    Google Scholar 

  • Nalewajko, C. and Schindler, D.W. 1976. Primary production, extracellular release and heterotrophy in two lakes in the E.L.A., Northwestern Ontario. J. Fish. Res. Bd. Can. 33: 219–226.

    Article  Google Scholar 

  • Paerl, H.W. 1978. Microbial organic carbon recovery in aquatic ecosystems. Limnol. Oceanogr. 23(5): 927–935.

    Article  CAS  Google Scholar 

  • Peroni, C. and Lavarello, O. 1975. Microbial activities as a function of water depth in the Ligurian Sea: an autoradiograph study. Mar. Biol. 30: 37–50.

    Article  Google Scholar 

  • Petersen, R.C. and Cummins, K.W. 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343–368.

    Article  Google Scholar 

  • Powell, D.A. 1979. Structure, solution properties and some biological interactions of some microbial extracellular polysaccharides. In: “Microbial polysaccharides and polysaccharases”. Berkeley, R.C.W., Gooday, G.W. and Ellwood, D.C. eds. Academic Press, London.

    Google Scholar 

  • Ramsay, A.J. 1974. The use of aütoradiography to determine the proportion of bacteria metabolizing in an aquatic environment. J. Gen. Microbiol. 80: 363–373.

    Google Scholar 

  • Rodgers, J.H. and Harvey, R.S. 1976. The effect of current on periphytic productivity as determined using 14C. Water Resources Bulletin 12(6): 1109–1118.

    Article  CAS  Google Scholar 

  • Rosemarin, A.S. 1975. Comparison of primary productivity (14C) per unit biomass between phytoplankton and periphyton in the Ottawa River near Ottawa, Canada. Verh. Internat. Verein. Limnol. 19: 1584–1592.

    Google Scholar 

  • Roth, I.L. 1977. Physical structure of surface carbohydrates. In: “Surface Carbohydrates of the Prokaryotes”, Sutherland, I. ed., Academic Press, New York.

    Google Scholar 

  • Schumacker, G.J. and Whitford, L.A. 1961. Repiration and 32P uptake in various species of freshwater algae as affected by current. J. Phycol. 1: 78–80.

    Article  Google Scholar 

  • Sharp, J.H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol. Oceanogr. 22: 381–399.

    Article  CAS  Google Scholar 

  • Smith, D.F. and Wiebe, W.J. 1976. Constant release of photosynthate from marine phytoplankton. Appl. Environ. Microbiol. 32: 75–79.

    PubMed  CAS  Google Scholar 

  • Smith, W.D., Barber, W.T. and Huntsman, S.A. 1977. Primary production off the coast of N.W. Africa: excretion of dissolved organic matter and its heterotrophic uptake. Deep Sea Research 24: 35–47.

    Article  CAS  Google Scholar 

  • Sperling, J.A. and Grunewald, R. 1969. Batch culturing of thermophilic benthic algae and phosphorus uptake in a laboratory stream model. Limnol. Oceanogr. 14: 944–949.

    Article  Google Scholar 

  • Steinberg, C. 1978. Release of dissolved organic carbon of various molecular sizes, in plankton populations. Arch. Eydrobiol. 82: 155–165.

    CAS  Google Scholar 

  • Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 38: 913–920.

    Google Scholar 

  • Suberkropp, K. and Klug, M.J. 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57: 707–719.

    Article  Google Scholar 

  • Telang, S.A. and Costerton, J.W. et al. 1976. Water quality and forest management: Chemical and biological processes in a forest-stream ecosystem of the Marmot Creek Drainage Basin. Report to Environment Canada, Inland Waters Directorate.

    Google Scholar 

  • Telang, S.A., Geesey, G.G., Ladd, T., Mutch, R.M., Wallis, P.M., Costerton, W.J. and Hodgson, G.W. 1977. Water quality in the Marmot Streams. Report to Inland Waters Directorate, Environment Canada, Ottawa.

    Google Scholar 

  • Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E. 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37: 130–137.

    Article  Google Scholar 

  • Wallis, P.M., Hynes, H.B.N. and Fritz, P. 1979. Sources, transportation and utilization of dissolved organic matter in groundwater and streams. Scientific Series No. 100 Inland Waters Directorate, Water Quality Branch, Ottawa.

    Google Scholar 

  • Watt, W.D. 1966. Release of dissolved organic material from the cells of phytoplankton populations. Troc. R. Soc. Lond. Ser. B. 164: 521–551.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. 1975. Limnology W.B. Saunders Company, Philadelphia.

    Google Scholar 

  • Wetzel, R.G. 1975. Primary production. In: “River Ecology”, Whitton, B.A. ed. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Wetzel, R.G. and Manny, B.A. 1972. Decomposition of dissolved organic carbon and nitrogen compounds from leaves in an experimental hard water stream. Limnol. Oceanogr. 17: 927–931.

    Article  CAS  Google Scholar 

  • Williams, P.J. Le B. and Yentsch, C.S. 1976. An examination of photosynthetic production excretion and photosynthetic products and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea. Mar. Biol. 35: 31–40.

    Article  CAS  Google Scholar 

  • Williamson, J. and McCartey, P.L. 1976. A model of substrate utilization by bacterial films. Jour. Wat. Pollut. Control Fed. 489–524.

    Google Scholar 

  • Whitford, L.A. and Schumacher, G.J. 1961. Effect of current on mineral uptake and respiration by a freshwater alga. Limnol. Oceanogr. 6: 423–425.

    Article  Google Scholar 

  • Whitton, B.A. 1975. Algae. In: “River Ecology”, Whitton, B.A. ed. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Wright, R.T. 1978. Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. Environ. Microbiol. 36(2): 297–305.

    PubMed  CAS  Google Scholar 

  • Wright, R.T. and Burnison, B.K. 1979. Heterotrophic activity measured with radiolabelled organic substrates. In: “Native aquatic bacteria: enumeration, activity and ecology” Costerton, J.W. and Colwell, R.R. eds. ASTM STP 695, American Society for Testing and Materials, Philadelphia. 140–155.

    Google Scholar 

  • Wright, R.T. and Hobbie, J.E. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology. 47: 447–464.

    Article  CAS  Google Scholar 

  • Wuhrmann, Von K., Eichemberger, E., Leidner, H.A. and Wuest, D. 1975. Uber den Einfluss der Stromungsgeschwindigkeit auf die Selbstreinigung in Fliessgewassern. Schweiz, Z. Eydrol. 37(2): 253–272.

    Article  Google Scholar 

  • Zobell, C.F. 1943. The effect of solid surfaces upon bacterial activity. J. Bact. 46: 39–56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Lock, M.A. (1981). River Epilithon — A Light and Organic Energy Transducer. In: Lock, M.A., Williams, D.D. (eds) Perspectives in Running Water Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1122-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1122-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1124-9

  • Online ISBN: 978-1-4684-1122-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation