Two-Component Systems in the Regulation of Heavy Metal Resistance

  • Chapter
Metal Ions in Gene Regulation

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Microbial resistance to heavy metals is widespread. This is not surprising, as early in evolutionary history microorganisms would have been in contact with toxic concentrations of heavy metals. Geochemical events caused the release of heavy metals from the earth’s crust into the biosphere, and still do. The change from an anoxic to an oxic biosphere altered the redox state and biological availability of a number of heavy metals. Resistances to a wide range of toxic metal ions have been reported in bacteria. These include resistances to metals that are purely toxic, with no ascribed biological function (such as mercury and cadmium), and to metals that are toxic in excess but are required in small amounts for the correct functioning of the bacterial cell (such as copper and zinc) (Silver and Ji 1994; Silver and Walderhaug 1992). Bacteria, and other unicellular organisms, must have mechanisms which allow them to avoid heavy metal toxicity, yet still accumulate enough of the essential heavy metals to allow normal cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aiba H., F. Nakasai, S. Mizushima, and T. Mizuno. 1989. Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. J. Biochem. Tokyo 106:5–

    PubMed  CAS  Google Scholar 

  • Altendorf K., and W. Epstein. 1996. The Kdp-ATPase of Escherichia coli. In Advances in Cell and Molecular Biology of Membranes and Organelles, Ed. R. E. Dalbey. pp. 401–418. JAI Press, Greenwich, CT.

    Google Scholar 

  • Andersen K., R. C. Tait, and W. R. King. 1981. Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus. Arch. Microbiol. 129:384–390.

    Article  CAS  Google Scholar 

  • Ansari A. Z., J. E. Bradner, and T. V. O’Halloran. 1995. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:371–375.

    Article  PubMed  CAS  Google Scholar 

  • Ansari A. Z., M. L. Chael, and T. V. O’Halloran. 1992. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Bender C. L., and D. A. Cooksey. 1986. Indigenous plasmids in Pseudomonas syringae pv. tomato:Conjugative transfer and role in copper resistance. J. Bacteriol 165:534–541.

    PubMed  CAS  Google Scholar 

  • Brown J. L., S. North, and H. Bussey. 1993 a. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J. Bacteriol 175:6908–6915.

    PubMed  CAS  Google Scholar 

  • Brown N. L., S. R. Barrett, J. Camakaris, B.T.O. Lee, and D. A. Rouch. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol. 17:1153–1166.

    Article  PubMed  CAS  Google Scholar 

  • Brown N. L., B. T. O. Lee, and S. Silver. 1993 b. Bacterial transport of and resistance to copper. In Metal Ions in Biological Systems, Eds. H. Sigel and A. Sigel. pp. 405–430. Marcel Dekker, New York.

    Google Scholar 

  • Cervantes, C, and S. Silver. 1992. Plasmid chromate resistance and chromium reduction. Plasmid 27:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Cha J. S., and D. A. Cooksey. 1993. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol. 59:1671–1674.

    PubMed  CAS  Google Scholar 

  • Chang H., M. Chen, Y. Shieh, M. J. Bibb, and C. W. Chen. 1996. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketids antibiotic actinorhodin. Mol. Microbiol. 21:1075–1085.

    PubMed  CAS  Google Scholar 

  • Conklin D. S., M. R. Culbertson, and C. Kung. 1994. Interactions between gene products involved in divalent cation transport in Sacchromyces cerevisiae. Mol. Gen. Genet. 244:303–311.

    CAS  Google Scholar 

  • Conklin D. S., J. A. McMaster, M. R. Culbertson, and C. Kung. 1992. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:3678–3688.

    CAS  Google Scholar 

  • Cooksey, D. A. 1993. Copper uptake and resistance in bacteria. Mol. Microbiol. 7:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Cooksey, D. A. 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol. Rev. 14:381–386.

    Article  PubMed  CAS  Google Scholar 

  • Dean C. R., S. Neshat, and K. Poole. 1996. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J. Bacteriol. 178:5361–5369.

    PubMed  CAS  Google Scholar 

  • Dean C. R., and K. Poole. 1993. Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol. Microbiol 8:1095–1103.

    Article  PubMed  CAS  Google Scholar 

  • Diels L., Q. Dong, D. Van der Lelie, W. Baeyens, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophusCH 34: from resistance mechanism to the removal of heavy metals. J. Indust. Microbiol. 14:142–153.

    Article  CAS  Google Scholar 

  • Diels L., and M. Mergeay. 1990. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl. Environ. Microbiol. 56:1485–1491.

    PubMed  CAS  Google Scholar 

  • Dressier, C, U. Kues, D. H. Nies, and B. Friedrich. 1991. Determinants encoding multiple metal resistance in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57:3079–3085.

    Google Scholar 

  • Endo G., and S. Silver. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pl258. J. Bacteriol. 177:4431–4441.

    Google Scholar 

  • Forst S., J. Delgado, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 86:6052–6056.

    Article  PubMed  CAS  Google Scholar 

  • Gladysheva T. B., K. L. Oden, and B. P. Rosen. 1994. Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–7293.

    Article  PubMed  CAS  Google Scholar 

  • Helmann J. D., B. T. Ballard, and C. T. Walsh. 1990. The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247:946–948.

    Article  PubMed  CAS  Google Scholar 

  • Hobman J. L., and N. L. Brown. 1997. Bacterial mercury resistance genes. In Metal Ions in Biological Systems, Eds. H. Sigel and A. Sigel. pp. 527–568. Marcel Dekker, New York.

    Google Scholar 

  • Hoch J. A., and T. J. Silhavy. 1995. Two Component Signal Transduction. ASM Press, Washington, 488 pp.

    Google Scholar 

  • Inoue Y., S. Kobayashi, and A. Kimura. 1993. Cloning and phenotypic characterization of a gene enhancing resistance against oxidative stress in Saccharomyces cerevisiae. J. Ferment. Bioeng. 75:327–331.

    Article  CAS  Google Scholar 

  • Ji G., and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pl258. Proc. Natl. Acad. Sci. U.S.A. 89:9474–9478.

    Article  PubMed  CAS  Google Scholar 

  • Kamizomo A., M. Nishizawa, A. Teranishi, K. Murata, and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 219:161–167.

    Google Scholar 

  • Kunito T., T. Kusano, H. Oyaizu, K. Senoo, S. Kanazawa, and S. Matsumoto. 1996. Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. Biosci. Biotech. Biochem. 60:699–704.

    Article  CAS  Google Scholar 

  • Lee Y. A., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Molecular cloning, chromosomal map**, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis:Homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176:173–188.

    PubMed  CAS  Google Scholar 

  • Liesegang H., K. Lemke, R. A. Siddiqui, and H.-G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophusCH34. J. Bacteriol 175:767–778.

    PubMed  CAS  Google Scholar 

  • Lonetto M. A., K. L. Brown, K. E. Rudd, and M. J. Buttner. 1994. Analysis of the Streptomyces coelicolor sigF gene reveals the existence of a subfamily of eubacterial RNA polymerase ? factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. U.S.A. 91:7573–7577.

    Article  PubMed  CAS  Google Scholar 

  • Maeda T., S. M. Wurgler-Murphy, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245.

    Article  PubMed  CAS  Google Scholar 

  • Mellano M. A., and D. A. Cooksey. 1988. Induction of the copper resistance operon from Pseudomonas syringae. J. Bacteriol. 170:4399–4401.

    PubMed  CAS  Google Scholar 

  • Mergeay M., D. Nies, H. G. Schlegel, J. Gerits, P. Charles, and F. Van Gijsegem. 1985. Alcaligenes eutrophusCH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162:328–33

    PubMed  CAS  Google Scholar 

  • Mills S. D., C. A. Jasalavich, and D. A. Cooksey. 1993. A two-component regulatory system for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J. Bacteriol. 175:1656–166

    PubMed  CAS  Google Scholar 

  • Mills S. D., C. K. Lim, and D. A. Cooksey. 1994. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol. Gen. Genet. 244:341–351.

    CAS  Google Scholar 

  • Morby A. P., J. S. Turner, J. W. Huckle, and N. J. Robinson. 1993. SmtB is a metaldependent repressor of the cyanobacterial metallothionein gene smtA:Identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res. 21:921–925.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D., H. Yu, G. Nucifora, and T. K. Misra. 1991. Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in Gram-negative bacteria. J. Biol. Chem. 266:18538–18542.

    PubMed  CAS  Google Scholar 

  • Nies D., M. Mergeay, B. Friedrich, and H. G. Schlegel. 1987. Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophusCH34. J. Bacteriol. 169:4865–4868.

    PubMed  CAS  Google Scholar 

  • Nies, D. H. 1995. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton-antiporter in Escherichia coli. J. Bacteriol. 177:2707–2712.

    PubMed  CAS  Google Scholar 

  • Nies, D. H. 1992. CzcR and CzcD, gene products affecting regulation of cobalt, zinc and cadmium resistance (czc)in Alcaligenes eutrophus. J. Bacteriol. 174:8102–811

    PubMed  CAS  Google Scholar 

  • Nies D. H., A. Nies, L. Chu, and S. Silver. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. U.S.A. 86:7351–7355.

    Article  PubMed  CAS  Google Scholar 

  • Nies D. H., and S. Silver. 1995. Ion efflux systems involved in bacterial metal resistances. J. Indust. Microbiol. 14:186–199.

    Article  CAS  Google Scholar 

  • Nies D. H., and S. Silver. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171:896–900.

    PubMed  CAS  Google Scholar 

  • Nixon B. T., C. W. Ronson, and F. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. U.S.A. 83:7850–7854.

    Article  PubMed  CAS  Google Scholar 

  • Odermatt A., and M. Solioz. 1995. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. 270:4349–4354.

    Article  PubMed  CAS  Google Scholar 

  • Odermatt A., H. Suter, R. Krapf, and M. Solioz. 1992. An ATPase operon involved in copper resistance by Enterococcus hirae. Ann. N.Y. Acad. Sci. 671:484–4

    Article  PubMed  CAS  Google Scholar 

  • Odermatt A., H. Suter, R. Krapf, and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268:12775–12779.

    PubMed  CAS  Google Scholar 

  • O’Halloran, T. V. 1993. Transition metals in control of gene expression. Science 261:715–725.

    Article  PubMed  Google Scholar 

  • O’Halloran T. V., B. Frantz, M. K. Shin, D. M. Ralston, and J. G. Wright. 1989. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56:119–129.

    Article  PubMed  Google Scholar 

  • Palmiter R. D., T. B. Cole, and S. D. Findley. 1996. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15:1784–1791.

    PubMed  CAS  Google Scholar 

  • Palmiter R. D., and S. D. Findley. 1995. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14:639–649.

    PubMed  CAS  Google Scholar 

  • Pao G. M., R. Tarn, L. S. Lipschitz, and M. H. Saier, Jr. 1994. Response regulators: Structure, function and evolution. Res. Microbiol. 145:356–362.

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J., A. Z. Ansari, J. G. Wright, N. L. Brown, and T. V. O’Halloran. 1993. Construction and characterization of a mercury-independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO J. 12:413–421.

    PubMed  CAS  Google Scholar 

  • Pratt L. A., and T. J. Silhavy. 1995. Porin regulon of Escherichia coli. In Two-Component Signal Transduction, Eds. J. A. Hoch and T. J. Silhavy. pp. 105–127. ASM Press, Washington.

    Google Scholar 

  • Ralston D., and T. V. O’Halloran. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. U.S.A. 87:3846–3850.

    Article  PubMed  CAS  Google Scholar 

  • Rampersaud A., S. L. Harlocker, and M. Inouye. 1994. The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. J. Biol. Chem. 269:12559–12566.

    PubMed  CAS  Google Scholar 

  • Rosen B. P., H. Bhattacharjee, and W. P. Shi. 1995. Mechanisms of metalloregulation of an anion-translocating ATPase. J. Bioenerget. Biomemb. 27:85–91.

    Article  CAS  Google Scholar 

  • Rouch D., J. Camakaris, B. T. O. Lee, and R. K. J. Luke. 1985. Inducible plasmid mediated copper resistance in Escherichia coli. J. Gen. Microbiol. 131:939–943.

    PubMed  CAS  Google Scholar 

  • Rouch, D. A. 1986. Plasmid-mediated copper resistance in E. coli. Ph.D. Thesis. The University of Melbourne.

    Google Scholar 

  • Rouch D. A., and N. L. Brown. 1997. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143:1191–120

    Article  PubMed  CAS  Google Scholar 

  • Rouch D. A., J. Parkhill, and N. L. Brown. 1995. Induction of bacterial mercury-and copper-responsive promoters: functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. 7. Indust. Microbiol 14:249–253.

    Google Scholar 

  • Schaifers K. T., G. 1984. Meyers Handbuch Weltall. Bibliographisches Institut, Mannheim, pp.

    Google Scholar 

  • Schmidt T., and H. G. Schlegel. 1994. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans31A. J. Bacteriol 176:7045–7054.

    PubMed  CAS  Google Scholar 

  • Silver S., K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, and H. Rosenberg. 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146:983–996.

    PubMed  CAS  Google Scholar 

  • Silver S., and G. Ji. 1994. Newer systems for bacterial resistances to toxic heavy metals. Environ. Health Perspect. 102:107–113.

    PubMed  CAS  Google Scholar 

  • Silver S., and L. T. Phung. 1996. Bacterial heavy metals resistance: New surprises. Annu. Rev. Microbiol. 50:753–789.

    Article  PubMed  CAS  Google Scholar 

  • Silver S., and M. Walderhaug. 1995. Bacterial plasmid-mediated resistances to mercury, cadmium and copper. In Toxicology of Metals. Biochemical Aspects. Eds. R. A. Goyer and M. G. Cherian. pp. 435–458. Springer Verlag, Berlin.

    Google Scholar 

  • Silver S., and M. Walderhaug. 1992. Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56:195–228.

    PubMed  CAS  Google Scholar 

  • Solioz M., and A. Odermatt. 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270:9217–9221.

    Article  PubMed  CAS  Google Scholar 

  • Solioz M., and C. Vulpe. 1996. Cpx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21:237–241.

    PubMed  CAS  Google Scholar 

  • Stock J. B., M. G. Surette, M. Levit, and P. Park. 1995. Two-component signal transduction systems: Structure-function relationships and mechanisms of catalysis. In Two-Component Signal Transduction, Eds. J. A. Hoch and T. J. Silhavy. pp. 25–51. ASM Press, Washington.

    Google Scholar 

  • Strausak D., and M. Solioz. 1997. CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J. Biol. Chem: In the Press.

    Google Scholar 

  • Summers, A. O. 1992. Untwist and shout: a heavy metal-responsive transcriptional regulator. J. Bacteriol. 174:3097–3101.

    PubMed  CAS  Google Scholar 

  • Tetaz T. J., and R.K.J. Luke. 1983. Plasmid controlled resistance to copper in Escherichia coli. J. Bacteriol 154:1263–1268.

    PubMed  CAS  Google Scholar 

  • Van der Lelie D., T. Schwuchow, U. Schwidetzky, S. Wuertz, W. Baeyens, M. Mergeay, and D. H. Nies. 1997. Two component regulatory system involved in transcriptional control of heavy metal homeostasis in Alcaligenes eutrophus. Mol. Microbiol. 23:493–503.

    Article  PubMed  Google Scholar 

  • Volz, K. 1995. Structural and functional conservation in response regulators. In Two-Component Signal Transduction, Eds. J. A. Hoch and T. J. Silhavy, pp. 53–64. ASM Press, Washington.

    Google Scholar 

  • Yabuuchi E., Y. Kosako, I. Yano, H. Hotta, and Y. Nishiuchi. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii(Ralston, Palleroni and Doudoroff 1973 comb. nov., Ralstonia solanaceaum(Smith, 1896) comb. nov. and Ralstonia eutropha(Davis 1969) comb. nov. Microbiol. Immunol. 39:897–904.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nies, D.H., Brown, N.L. (1998). Two-Component Systems in the Regulation of Heavy Metal Resistance. In: Silver, S., Walden, W. (eds) Metal Ions in Gene Regulation. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5993-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5993-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7745-0

  • Online ISBN: 978-1-4615-5993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation