Tumor Oxygenation Under Normobaric and Hyperbaric Hyperoxia

Impact of Various Inspiratory CO2 Concentrations

  • Chapter
Oxygen Transport to Tissue XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 428))

  • 275 Accesses

Abstract

Tumor hypoxia is an important factor limiting the efficiency of sparsely ionizing ra-diation and O2-dependent chemotherapy. Since the tumor pO2 is the result of a dynamic steady state between oxygen supply and O2 consumption of the tumor tissue, hypoxia could be reduced either by increasing the O2-supply or by reducing the O2 demand of the tumor cells. The O2 supply can be improved for instance by (i) increasing the arterial oxy-gen partial pressure, (ii) improving (and homogenizing) the tumor perfusion, or (iii) en-hancing the O2 release from blood into the tissue by right-shifting the HbO2 dissociation curve. Theoretically, it should also be possible to improve tumor oxygenation by a rela-tively small decrease in O2 consumption rate of the tumor cells. However, at present in-creasing the arterial pO2 by breathing hyperoxic gas mixtures seems to be the most effective method to improve tumor oxygenation and, thus, to enhance the efficiency of standard radio- and chemotherapy in experimental malignancies [1,7,10,11,15,24] as well as in human tumors [3,9,12,14,22,29,30]. However, since in some tumor entities oxygena-tion is inadequate and anisotropic [27], normobaric hyperoxia is often not sufficient to completely eradicate tumor hypoxia [6,16,18,26]. In these cases only breathing of hyper-oxic gases under hyperbaric conditions may be sufficient to lead to therapeutic results. On the other hand, studies on experimental tumors in animals as well as clinical trials in pa-tients showed non-uniform results concerning the therapeutic benefit of inspiratory hyper-oxia ranging from clear improvement of radiosensitivity [3,4,20,30] to no effect on therapeutic outcome [3,4]. Finally, enhancement of tumor growth by hyperbaric oxygenation has been discussed [13,23].

Supported by the Deutsche Krebshilfe (Grant M 40/91 Va 1) and the Dr.med.h.c. Erwin Braun Foundation, Basel (Grant 5.5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alagoz T, Buller RE, Anderson B, Terrell KL, Squatrito RC, Niemann TH, Tatman DJ, Jebson P. Evalu-ation of hyperbaric oxygcn as a chemoscnsitizer in the treatment of epithelial ovarian cancer in xenografts in mice. Cancer 75: 2313–2322 (1995).

    Google Scholar 

  2. Brizel DM, Lin S, Johnson JL, Brooks J, Dewhirst MW, Piantadosi CA. The mechanisms by which hyper-baric oxygen and carbogen improve tumour oxygenation. Brit. J. Cancer 72: 1120–1124 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. Denham JW, Yeoh EK, Wittwer G, Ward GG, Ahmad AS, Harvey ND. Radiation therapy in hyperbaric oxygen for head and neck cancer at Royal Adelaide Hospital-1964 to 1980. Int. J. Radiat. Oncol. Biol.Phys. 73:201–208(1987).

    Article  Google Scholar 

  4. Dishe S. What have we learnt from hyperbaric oxygen? Radiother. Oncol. 20 (Suppl.): 71–74 (1991).

    Article  Google Scholar 

  5. Dische S, Anderson PJ, Sealy R, Watson ER. Carcinoma of the cervix-anaemia, radiotherapy and hyper-baric oxygen. Br. J. Radiol. 56: 251–255 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. Falk SJ, Ward R, Bleehen NM. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised pO2 histography. Br. J. Cancer 66: 919–924 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Gerweck LE, Hetzel FW. pO2 in irradiated versus nonirradiated tumors of mice breathing oxygen at normal and elevated pressure. Int. J. Radiat. Oncol. Biol. Phys. 32: 695–701 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. Grau C, Horsman MR, Overgaard J. Improving the radiation response in a C3H mouse mammary carci-noma by normobaric oxygen or carbogen breathing. Int. J. Radiat. Oncol. Biol. Phys. 22: 415–419 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Henk JM. Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer: a rationale for hypoxic cell sensitizers? Int. J. Radiat. Oncol. Biol. Phys. 12: 1339–1341 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. Horsman MR, Nordsmark M, Khalil AA, Hill SA, Chaplin DJ, Siemann DW, Overgaard J. Reducing acute and chronic hypoxia in tumors by combining nicotinamide with carbogen breathing. Acta Oncol. 33: 371–376(1994).

    Article  PubMed  CAS  Google Scholar 

  11. Kjellen E, Joiner MC, Collier JM, Johns H, Rojas A. A therapeutic benefit from combining normobaric car-bogen or oxygen with nicotinamide in fractionated X-ray treatments.Radiother. Oncol. 22: 81–91 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. Laurence VM, Ward R, Dennis IF, Bleehen NM. Carbogen breathing with nicotinamide improves the oxy-gen status of tumours in patients. Br. J. Cancer 72: 198–205 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. Margaretten NC, Witschi HP. Effects of hyperoxia on growth characteristics of metastatic murine tumors in the lung. Cancer Res. 48: 2779–2783 (1988).

    PubMed  CAS  Google Scholar 

  14. Martin L, Lartigau E, Weeger P, Lambin P, Le Ridnat AM, Lusinchi A, Wibault P, Eschwege F, Luboinski B, Guichard M. Changes in the oxygenation of head and neck tumors during carbogen breathing. Ra-diother. Oncol. 27: 123–130(1993).

    Article  CAS  Google Scholar 

  15. Martin LM, Thomas CD, Guichard M. Nicotinamide and carbogen: relationship between pO-2 and radiosen-sitivity in three tumour lines. Int. J. Radiat. Biol. 65: 379–386 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. Mueller-Klieser W, Vaupel P. Tumor oxygenation under normobaric and hyperbaric conditions. Br. J. Ra-diol. 56:559–564(1983).

    Article  CAS  Google Scholar 

  17. Overgaard J. Sensitization of hypoxic tumour cells—clinical experience. Int. J. Radiat. Biol. 56: 801–811 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. Perry PM, Nias AH. The optimum pressure of oxygen for radiotherapy of a mouse tumour. Br. J. Radiol. 65:784–786 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. Rockwell S, Irvin CG, Kelley M, Hughes CS, Yabuki H, Porter E, Fischer JJ. Effects of hyperbaric oxygen and a perfluorooctylbromide emulsion on the radiation responses of tumors and normal tissues in rodents. Int. J. Radiat. Oncol. Biol. Phys. 22: 87–93 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Rojas A, Joiner MC, Hodgkiss RJ, Carl U, Kjellen E, Wilson GD. Enhancement of tumor radiosensitivity and reduced hypoxia-dependent binding of a 2-nitroimidazole with normobaric oxygen and carbogen: a therapeutic comparison with skin and kidneys. Int. J. Radiat. Oncol. Biol. Phys. 23: 361–366 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. Rojas A, Stewart FA, Smith KA, Soranson JA, Randhawa VS, Stratford MR, Denekamp J. Effect of ane-mia on tumor radiosensitivity under normo-and hyperbaric conditions. Int. J. Radiat. Oncol. Biol. Phys. 13: 1681–1689(1987).

    Article  PubMed  CAS  Google Scholar 

  22. Sealy R, Cridland S, Barry L, Norris R. Irradiation with misonidazole and hyperbaric oxygen: final report on a randomized trial in advanced head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 12: 1343–1346 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. Sklizovic D, Sanger JR, Kindwall EP, Fink JG, Grunert BK, Campbell BH. Hyperbaric oxygen therapy and squamous cell carcinoma cell line growth. Head Neck 15: 236–240 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. Teicher BA, Sotomayor EA, Robinson MF, Dupuis NP, Schwartz GN, Frei III E. Tumor oxygenation and radiosensitization by pentoxifylline and perflubron emulsion/carbogen breathing. Int. J. Oncol. 2: 13–21 (1993).

    PubMed  CAS  Google Scholar 

  25. Teicher BA, Holden SA, Cathcart KN, Herman TS. Effect of various oxygenation conditions and fluosol-DA on cytotoxicity and antitumor activity of bleomycin in mice. J. Natl. Cancer Inst. 80: 599–603 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. Thews O, Kelleher DK, Vaupel PW. Modulation of spatial O2 tension distribution in experimental tumors by increasing arterial O2 supply. Acta Oncol. 34: 291–295 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. Thews O, Kelleher DK, Vaupel PW. pO2-map** of experimental rat tumors: visualization and statistical analysis. In: PW Vaupel, DK Kelleher, M Günderoth (eds.). Tumor oxygenation. Gustav Fischer, Stuttgart, 27–38(1995).

    Google Scholar 

  28. Vaupel P, Schienger K, Knoop C, Hückel M. Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51: 3116–3122 (1991).

    Google Scholar 

  29. Voute PA, van der Kleij AJ, De Kraker J, Hoefnagel CA, Tiel van Buul MM, Van Gennip H. Clinical expe-rience with radiation enhancement by hyperbaric oxygen in children with recurrent neuroblastoma stage IV Eur. J. Cancer 31A: 596–600(1995).

    Article  PubMed  CAS  Google Scholar 

  30. Whittle RJ, Fuller AP, Foley RR. Glottic cancer: results of treatment with radiotherapy in air and hyper-baric oxygen. Clin. Oncol. Roy. Coll. Radiol. 2: 214–219 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thews, O., Kelleher, D.K., Vaupel, P. (1997). Tumor Oxygenation Under Normobaric and Hyperbaric Hyperoxia. In: Harrison, D.K., Delpy, D.T. (eds) Oxygen Transport to Tissue XIX. Advances in Experimental Medicine and Biology, vol 428. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5399-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5399-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7465-7

  • Online ISBN: 978-1-4615-5399-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation