Abstract

When heat is added to or removed from a solid material there is a change in dimensions, △L. If the material is isotropic, then the change in dimensions is the same in all directions and the mean coefficient of linear thermal expansion is defined as

$$ {{\alpha }_{m}} = \frac{1}{{{{L}_{0}}}}\frac{{\Delta L}}{{\Delta T}} $$
(1)

where Lo is the length at some reference temperature, preferably 293 K. The limiting value of this definition (at constant pressure P) for a differential change in temperature is defined as the coefficient of linear thermal expansion or as the expansivity

$$ \\alpha = \frac{1}{{{L_0}}}{\left( {\frac{{\partial L}}{{\partial T}}} \right)_p}\ $$
(2)

The relative change in dimensions, or the thermal expansion (△L)/L o, is usually expressed in parts per million (µm/m) or as a percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai, Thermophysical Properties of Matter, The TPRC Data Series, Vol. 12, Thermal Expansion of Metallic Elements and Alloys, IFI/Plenum Press, New York (1975).

    Google Scholar 

  2. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermophysical Properties of Matter, The TPRC Data Series, Vol. 13, Thermal Expansion of Nonmetallic Solids, IFI/Plenum Press, New York (1977).

    Google Scholar 

  3. J.F. Nye, Physical Properties of Crystals, Oxford University Press (1960).

    Google Scholar 

  4. T. Preston, The Theory of Heat, MacMillan and Co., London (1904).

    Google Scholar 

  5. H.L. Callendar, “On the Practical Measurement of Temperature,” Philos. Trans. R. Soc. London 178, 161 (1887).

    Article  ADS  Google Scholar 

  6. L. Holborn and A. Day, “The Air Thermometer at High Temperature,” Ann. Phys. 307, 505 (1900).

    Article  Google Scholar 

  7. W. Souder and P. Hidnert, “Measurements on the Thermal Expansion of Fused Silica,” Sci. Pap. BS 21 (S524) (1926).

    Google Scholar 

  8. B.D. Rothrock and R.K. Kirby, “An Apparatus for Measuring Thermal Expansion at Elevated Temperatures,” J. Res. Natl. Bur. Stand. 71C, 85 (1967).

    Google Scholar 

  9. M.H. Fizeau, “Memoir on the Expansion of Solids by Heat,” Compt. Rend. 62, 1101 (1866).

    Google Scholar 

  10. D.B. Fraser and A.C. Hollis-Hallet, “The Coefficient of Thermal Expansion of Various Cubic Metals Below 100 K,” Can. J. Phys. 43, 193 (1965).

    Article  ADS  Google Scholar 

  11. S.J. Bennett, “The NPL Interferometric Dilatometer,” J. Phys. E 10, 525 (1976).

    Article  ADS  Google Scholar 

  12. K. Becker, “An X-Ray Method to Determine the Thermal Expansion Coefficient at High Temperature,” Z. Phys. 40, 37 (1926).

    Article  ADS  Google Scholar 

  13. F.A. Mauer and L.H. Bolz, “Problems in the Temperature Calibration of an X-Ray Diffractometer Furnace,” in: Advances in X-Ray Analysis, Vol. 5, p. 544, Plenum Press, New York (1961).

    Google Scholar 

  14. P. Hidnert and W.T. Sweeney, “Thermal Expansion of Magnesium and Some of Its Alloys,” NBS J. Res. 1, 771 (1928).

    Google Scholar 

  15. W.A. Plummer, “Differential Dilatometry, A Powerful Tool,” AIP Conf. Proc., No. 17—Thermal Expansion, p. 147, American Institute of Physics, New York (1974).

    Google Scholar 

  16. J.M. Shapiro, D.R. Taylor, and G.M. Graham, “A Sensitive Dilatometer for Use at Low Temperatures,” Can. J. Phys. 42, 835 (1964).

    Article  ADS  Google Scholar 

  17. K. Andres, “The Measurement of Thermal Expansion of Metals at Low Temperatures,” Cryogenics 2, 93 (1961).

    Article  Google Scholar 

  18. P.W. Sparks and C.A. Swenson, “Thermal Expansion from 2 to 40 K of” Ge, Si, and Four III-V Compounds,“ Phys. Rev. 163, 779 (1967).

    Article  ADS  Google Scholar 

  19. R.H. Can, R.D. McCammon, and G.K. White, “The Thermal Expansion of Cu at Low Temperatures”, Proc. R. Soc. London A280, 72 (1964).

    ADS  Google Scholar 

  20. A.P. Müller and A. Cezairliyan, “Thermal Expansion of Iron During the Phase Transformation by a Transient Interferometric Technique,” in: Thermal Expansion 8, p. 245, Plenum Press, New York (1984).

    Google Scholar 

  21. G. Ruffino, “Thermal Expansion Measurement by Interferometry,” in: Compendium of Thermophysical Property Measurement Methods, Vol. 1, Survey of Measurement Techniques, p. 689, Plenum Press, New York (1984).

    Chapter  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, p. 648, 3rd edn., Wiley, New York (1966).

    Google Scholar 

  23. W.E. Schoknecht and R.O. Simmons, “Thermal Vacancies and Thermal Expansion,” AIP Conf. Proc., No. 3—Thermal Expansion, p. 169, American Institute of Physics, New York (1972).

    Google Scholar 

  24. R.G. Merryman and C.P. Kempter, “Precise Temperature Measurement in Debye-Scherer Specimens at Elevated Temperatures,” J. Am. Ceram. Soc. 48, 202 (1965).

    Article  Google Scholar 

  25. F.A. Mauer and T.A. Hahn, “Thermal Expansion of Some Azides by a Single Crystal X-Ray Method,” AIP Conf. Proc., No. 3—Thermal Expansion, p. 139, American Institute of Physics, New York (1972).

    Google Scholar 

  26. W.E. Prytherch, “A New Form of Dilatometer,” J. Sci. Instrum. 9, 128 (1932).

    Article  ADS  Google Scholar 

  27. J.L. Haughton and F. Adcock, “Improvements in Prytherch’s Capacity Dilatometer,” J. Sci. Instrum. 10, 178 (1933).

    Article  ADS  Google Scholar 

  28. D. Bijl and H. Pullan, “A New Method for Measuring the Thermal Expansion of Solids at Low Temperatures,” Physica 21, 285 (1955).

    Article  ADS  Google Scholar 

  29. J.F. Kos and J.L.G. Lamarche, “Thermal Expansion of the Noble Metals Below 15 K,” Can. J. Phys. 47, 2509 (1969).

    Article  ADS  Google Scholar 

  30. G.K. White, “Measurement of Thermal Expansion at Low Temperatures,” Cryogenics 1, 151 (1961).

    Article  ADS  Google Scholar 

  31. R.K. Kirby, “Thermal Expansion of Ceramics,” NBS Special Publ. 303, Mechanical and Thermal Properties of Ceramics, p. 41 (1969).

    Google Scholar 

  32. G.R. Hyde, L.P. Dominques, and L.R. Furlong, “Improved Dilatometer,” Rev. Sci. Instrum. 36, 204 (1965).

    Article  ADS  Google Scholar 

  33. P.S. Gaal, “Universal Graphite Dilatometer for High Temperature Studies,” in: Thermal Expansion 6, p. 145, Plenum Press, New York (1978).

    Chapter  Google Scholar 

  34. G. Ruffino, “A Recording Dilatometer and Measurement of Thermal Expansion Coefficient of Polyethyl Methacrylate (Lucite) Between 90 and 273 K,” ASME Prog. Int. Res. Thermodynam. and Transp. Prop., p. 185, Academic Press, New York (1962).

    Google Scholar 

  35. R.W. Meyerhoff and J.F. Smith, “Anisotropic Thermal Expansion of Single Crystals of Thallium, Yttrium, Beryllium, and Zinc at Low Temperatures,” J. Appl. Phys. 33, 219 (1962).

    Article  ADS  Google Scholar 

  36. G.K. White, “Thermal Expansion of Platinum at Low Temperatures,” J. Phys. F2, L30 (1972).

    Article  ADS  Google Scholar 

  37. F.C. Nix and D. MacNair, “The Thermal Expansion of Pure Metals,” Phys. Rev. 61, 74 (1942).

    Article  ADS  Google Scholar 

  38. T.A. Hahn and R.K. Kirby, “Thermal Expansion of Platinum from 293 to 1900 K,” AIP Conf. Proc., No. 3—Thermal Expansion, p. 87, American Institute of Physics, New York (1972).

    Google Scholar 

  39. G.K. White, “Reference Materials at Low Temperatures,” AIP Conf. Proc., No. 17—Thermal Expansion, p. 1, American Institute of Physics, New York (1974).

    Google Scholar 

  40. T.A. Han, “Thermal Expansion of Copper from 20 to 800 K,” J. Appl. Phys. 41, 5096 (1970).

    Article  ADS  Google Scholar 

  41. F.C. Nix and D. MacNair, “The Thermal Expansion of Pure Metals,” Phys. Rev. 60, 597 (1941).

    Article  ADS  Google Scholar 

  42. R.O. Simmons and R. W. Balluffi, “Measurements of Equilibrium Vacancy Concentrations in Aluminum,” Phys. Rev. 117, 52 (1960).

    Article  ADS  Google Scholar 

  43. R.B. Roberts, “Expansivity of Silicon from 293 to 775 K,” in: Thermal Expansion 6, p. 187, Plenum Press, New York (1977).

    Google Scholar 

  44. H. Ibach, “Thermal Expansion of Silicon and Zinc Oxide,” Phys. Status Solidi 31, 625 (1969).

    Article  Google Scholar 

  45. B. Yates, R.F. Cooper, and A.F. Pojur, “Thermal Expansion at Elevated Temperatures,” J. Phys. C 5, 1046 (1972).

    Article  ADS  Google Scholar 

  46. J.B. Wachtman, T.G. Scuderi, and G.W. Cleek, “Linear Thermal Expansion of Aluminum Oxide and Thorium Oxide from 100 to 1100 K,” J. Am. Ceram. Soc. 45, 319 (1962).

    Article  Google Scholar 

  47. A. Schauer, “Thermal Expansion, Gruneisen Parameter, and Temperature Dependence of Lattice Vibration Frequencies of Aluminum Oxide,” Can. J. Phys. 43, 523 (1965).

    Article  ADS  Google Scholar 

  48. T.A. Hahn, “Thermal Expansion of Single Crystal Sapphire from 293 to 2000 K,” in: Thermal Expansion 6, p. 191, Plenum Press, New York (1977).

    Google Scholar 

  49. P.S. Gaal, “Graphite Thermal Expansion Reference for High Temperature,” AIP Conf. Proc., No. 17—Thermal Expansion, p. 102, American Institute of Physics, New York (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirby, R.K. (1992). Methods of Measuring Thermal Expansion. In: Maglić, K.D., Cezairliyan, A., Peletsky, V.E. (eds) Compendium of Thermophysical Property Measurement Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3286-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3286-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6445-0

  • Online ISBN: 978-1-4615-3286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation