Abstract

Zinc is an essential component of many enzymes, serving a role for catalytic activity or structural stability. The removal of catalytic zinc results in an inactive apoenzyme which, however, often retains the native tertiary structure. Structural zinc frequently contributes to the maintenance of the structure of oligomeric enzymes. The removal of zinc from such proteins therefore prevents subunit association. As discerned from zinc analysis of structurally investigated zinc metalloenzymes, the characteristics of a catalytic zinc-binding motif, in many cases, is a combination of three His/Glu/Asp/Cys residues and an activated H2O-molecule (Vallee & Auld, 1990). The spacers between the first and second ligands are short, typically 1–3 amino acids long (alcohol dehydrogenase and sorbitol dehydrogenase are exceptions with 21–25 residues). The second spacer, longer in nature, separates the second and third ligands by about 20–120 amino acid residues (Vallee & Auld, 1989). The structural zinc is necessary for activity only to the extent that the overall conformation of the enzyme affects its action. It serves as a cross-linking agent to stabilize structures (Berg, 1987). The observed pattern of ligands frequently encompasses four cysteine residues, closely spaced in the linear amino acid sequence (Vallee & Auld, 1990). Sorbitol dehydrogenase (SDH) harbours one catalytic zinc atom per subunit (Jeffery et al., 1984a). Because of the structural relationship between SDH and alcohol dehydrogenase (ADH), two of the three ligands to the zinc could be established early in SDH (Cys44 and His69, Jeffery et al., 1984b). The homology in the area around the third zinc ligand in SDH, though, was low toward ADH. The modelled structure of sheep SDH using the crystal structure of horse ADH as reference, gave the best fit with a glutamic acid residue (Glu 155) as the third zinc ligand (Eklund et al., 1985). In order to establish the exact nature of the third zinc ligand, a set of five different potential ligands were mutated to Ala or Gln, residues not able to ligand zinc, and the proteins were expressed in E. coli with subsequent purification and determination of enzyme activities and zinc contents (Karlsson, 1994). ADH contains two zinc atoms per subunit, one catalytic and one structural (Åkeson, 1964; Drum et al., 1969; Eklund et al., 1976). The binding site of the structural zinc atom in ADH involves four cysteine residues at positions 97, 100, 103, and 111. Though it has been designated as structural since long, the exact functions, as well as the question which structural property it maintains, are unclear. To investigate the contribution of each of the second zinc ligands to the overall conformation, we have performed in vitro mutagenesis of class I and III ADH (Jelokovà et al., 1994). The ligands were mutated, in separate constructs, to non-zinc liganding counterparts, Ala or Ser. Proteins expressed were found to be labile and therefore, were detectable only from crude extracts upon Western blot analysis. Confirmation of correctly working transcription processes was ascertained by positive Northern blot analyses. The recently published crystal structure of glucose dehydrogenase from the archaeon Thermoplasma acidophilum, reveals structural homology (in spite of low sequence identity) to ADH from horse liver and SDH from sheep liver (John et al., 1994). Glucose dehydrogenase is a tetramer and posesses a structural zinc atom, contained within a loop similar to that of ADH. However, the orientation of this structural loop with respect to the subunit is markedly different from that of ADH. This further illustrates the role of the zinc loop in the quaternary structures of several of the enzymes within the medium- chain dehydrogenase/reductase super-family, MDR (Persson et al. 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berg, J. M. (1987) Metal ions in proteins: Structural and functional roles. Quant. Biol. 52, 579–585.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chirgwin, J., Aeyable, A., McDonald, R. & Rutter, W. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  • Drum, D. E., Li, T.-K. & Vallee, B. L. (1969) Considerations in evaluating the zinc content of horse liver alcohol dehydrogenase preparations. Biochemistry 8, 3783–3791.

    Article  CAS  PubMed  Google Scholar 

  • Eklund, H., Nordström, B., Zeppezauer, M., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.-O., Tapia, O. & Brändén, C.-I. (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59.

    Article  CAS  PubMed  Google Scholar 

  • Eklund, H., Horjales, E., Jörnvall, H., Brändén, C.-I. & Jeffery, J. (1985) Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry 24, 8005–8012.

    Article  CAS  PubMed  Google Scholar 

  • Estonius, M., Höög, J.-O., Danielsson, O. & Jörnvall. H. (1994) Residues specific for class III alcohol dehydrogenase. Class transitions and S-hydroxymethylglutathione binding. Site-directed mutagenesis of the human enzyme. Biochemistry, in press.

    Google Scholar 

  • Feiters, M. C. & Jeffery, J. (1989) Zinc environment in sheep liver sorbitol dehydrogenase. Biochemistry 28, 7257–7262.

    Article  CAS  PubMed  Google Scholar 

  • Hedén, L.-O., Höög, J.-O., Larsson, K., Lake, M., Lagerholm, E., Holmgren, A., Vallee, B.L., Jörnvall, H. & von Bahr-Lindström, H. (1986) cDNA clones coding for the β-subunit of human liver alcohol dehydrogenase have differently sized 3′-non-coding regions. FEBS Lett. 194, 327–332.

    Article  PubMed  Google Scholar 

  • Höög, J.-O., Weis, M., Zeppezauer, M., Jörnvall, H. & von Bahr-Lindström, H. (1987) Expression in Escherichia coli of active human alcohol dehydrogenase lacking N-terminal acetylation. Biosci. Rep. 7, 969–974.

    Article  PubMed  Google Scholar 

  • Jeffery, J., Cummins, L., Carlquist, M. & Jörnvall, H. (1981) Properties of sorbitol dehydrogenase and characterization of a reactive cysteine residue reveal unexpected similarities to alcohol dehydrogenases. Eur. J. Biochem. 120, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, J., Chesters, S. J., Mills, C., Sadler, P. J. & Jörnvall, H. (1984a) Sorbitol dehydrogenase is a zinc enzyme. EMBO J. 3, 357–360.

    CAS  PubMed  Google Scholar 

  • Jeffery, J., Cederlund, E. & Jörnvall, H. (1984b) Sorbitol dehydrogenase. The primary structure of the sheep-liver enzyme. Eur. J Biochem. 140, 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Jeloková, J., Karlsson, C., Estonius, M., Jörnvall, H. & Höög, J.-O. (1994) Features of structural zinc in mammalian alcohol dehydrogenase. Eur. J. Biochem., in press.

    Google Scholar 

  • John, J., Crennell, S. J., Hough, D. W., Danson, M. J. & Taylor, G. L. (1994) The crystal structure of glucose dehydrogenase from Thermoplasma acidophilum. Structure 2, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Jörnvall, H., Eklund, H. & Brändén, C.-I. (1978) Subunit conformation of yeast alcohol dehydrogenase. J. Biol. Chem. 253, 8414–8419.

    PubMed  Google Scholar 

  • Jörnvall, H., von Bahr-Lindström, H. & Jeffery, J. (1984) Extensive variations and basic features in the alcohol dehydrogenase — sorbitol dehydrogenase family. Eur. J. Biochem. 140, 17–23.

    Article  PubMed  Google Scholar 

  • Karlsson, C., Jörnvall, H. & Höög, J.-O. (1991) Sorbitol dehydrogenase: cDNA coding for the rat enzyme. Variations within the alcohol dehydrogenase family independent of quaternary structure and metal content. Eur. J. Biochem. 198, 761–765.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, C. & Höög, J.-O. (1993) Zinc coordination in mammalian sorbitol dehydrogenase. Replacement of putative zinc ligands by site-directed mutagenesis. Eur. J. Biochem. 216, 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, C. (199) Dissertation, Karolinska Institutet, Stockholm, Sweden.

    Google Scholar 

  • Kötter, P., Amore, R., Hollenberg, C. P. & Ciriacy, M. (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18,493–500.

    Article  PubMed  Google Scholar 

  • Leissing, N. & McGuinness E. T. (1978) Rapid affinity purification and properties of rat liver sorbitol dehydrogenase. Biochim. Biophys. Acta 524, 254–261.

    Article  CAS  PubMed  Google Scholar 

  • Lutz, R. A., Bull, C. & Rodbard, D. (1986) Computer analysis of enzyme-substrate-inhibitor kinetic data with automatic model selection using IBM-PC compatible microcomputers. Enzyme 36, 197–206.

    CAS  PubMed  Google Scholar 

  • Magonet, E., Hayen, P., Delforge, D., Delaive, E. & Remacle, J. (1992) Importance of the structural zinc atom for the stability of yeast alcohol dehydrogenase. Biochem. J. 287, 361–365.

    CAS  PubMed  Google Scholar 

  • Maret, W. (1989) Cobalt(II)-substituted class III alcohol dehydrogenase and sorbitol dehydrogenase from human liver. Biochemistry 28, 9944–9949.

    Article  CAS  PubMed  Google Scholar 

  • Ng, K., Ye, R., Wu, X.-C. & Wong, S.-L. (1992) Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning. J. Biol. Chem. 267, 24989–24994.

    CAS  PubMed  Google Scholar 

  • Niimi, T., Yamashita, O. & Yaginuma, T. (1993) A cold-inducible Bombyx gene encoding a protein similar to mammalian sorbitol dehydrogenase. Yolk nuclei-dependent gene expression in diapause eggs. Eur. J. Biochem. 213, 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  • Persson, B., Zigler J. S. Jr. & Jörnvall H. (1994) A super-family of medium-chain dehydrogenases/reductases (MDR): sub-lines including ζ-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductases, enoyl reductases, VAT-1 and further proteins. Eur. J Biochem., submitted.

    Google Scholar 

  • Roumi, P. Loomes, K. & Jörnvall, H. (1993) Comparative proteolysis of sorbitol and alcohol dehydrogenases. Eur. J. Biochem. 213, 487–492.

    Article  Google Scholar 

  • Sanger, F., Nicklen, S. & Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74, 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, C. P., Fox, E. A., Holmquist, B., Jörnvall, H. & Vallee, B. (1989) cDNA sequence of human class III alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 164, 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J. W., Ott, J. & Eckstein, F. (1985) The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 13, 8765–8785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallee, B. L. & Auld, D.S. (1989) Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes. FEBS Lett. 257, 138–140.

    Article  CAS  PubMed  Google Scholar 

  • Vallee, B. L. & Auld, D.S. (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659.

    Article  CAS  PubMed  Google Scholar 

  • Åkeson, Å. (1964) On the zinc content of horse liver alcohol dehydrogenase. Biocem. Biophys. Res. Commun. 17, 211–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karlsson, C., Jörnvall, H., Höög, JO. (1995). Zinc Binding of Alcohol and Sorbitol Dehydrogenases. In: Weiner, H., Holmes, R.S., Wermuth, B. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 5. Advances in Experimental Medicine and Biology, vol 372. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1965-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1965-2_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5808-4

  • Online ISBN: 978-1-4615-1965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation