Arsenic Toxicity and Tolerance Mechanisms in Plants: An Overview

  • Chapter
  • First Online:
Crop Improvement

Abstract

Heavy metal stress is increasing at an alarming rate in agricultural soils through out the world. Heavy metal (Cd, Cu, Zn, Ni, Co, Cr, Pb and As) toxicity have been reported to be responsible for the reduced crop production. Among the heavy metals arsenic (As) is non-essential and toxic to both plants and animals. As can exist in environment in the form of oxidized arsenate (AsV) and reduced arsenite (AsIII). As stress has become a global concern, the uptake of As in the plants through contaminated soil will make its entry into the human food chain. As toxicity can lead to skin, bladder, lung and prostate cancer. Soil contaminated with As is the main source of arsenic in drinking water. Uptake of As by plants is very important in understanding its physiological effects and its metabolism within plants. How plants respond to the arsenic stress in plants is a major concern to biologists. As per the published literature numerous physiological processes are affected by the As toxicity. As is also responsible for oxidative stress in plants through the generation of reactive oxygen species (ROS) which attack the biomolecules like, membranes proteins, carbohydrates, nucleic acids etc. At the same time activity of enzymatic and non-enzymatic antioxidants are increased which helped the plant to withstand the toxicity of As. The present chapter throws light on the arsenic toxicity in plants and their tolerance mechanism in plants. The chapter also highlights the generation of reactive oxygen species and antioxidants during As stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environment. Springer, New York,

    Book  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York,

    Book  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis F (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  PubMed  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1989) Genetics of tolerance in agronomic plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Florida, pp 255–267

    Google Scholar 

  • Aten CF, Bourke JB, Martini JH et al (1980) Arsenic and lead in an orchard environment. Environ Toxicol 24:108–115

    Google Scholar 

  • Axelsen K, Palmgren M (2001). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106(Suppl):93–111

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Speciat Bioavailab 1:7–17

    CAS  Google Scholar 

  • Banejad H, Olyaie E (2011) Arsenic toxicity in the irrigation water-soil-plant system: a significant environmental problem. J Am Sci 7(1):125–131

    Google Scholar 

  • Barlian-Aidid S, Okamoto H (1992) Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina. Environ Exp Bot 32:439–448

    Article  Google Scholar 

  • Berry WL, Wallace A (1981) Toxicity: the concept and relationship to the dose response curve. J Plant Nutr 3:13–19

    Article  CAS  Google Scholar 

  • Bhattacharya S, Goswami MR, Dhar A, Chattopadhyay D, Mukhopadhyay A, Ghosh UC (2012) Effects of arsenic stress on germination, seedling growth and peroxidase activity in pea seeds and kidney bean seeds. J Universal Pharm Life Sci 2(3):760–770

    Google Scholar 

  • Bondada B, Ma LQ (2002) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.), In: Nayar BK, Chandra S, Srivastava M (eds) Pteridology in New millennium. Kluwer Academy Publishers, 397–420

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45B:198–207

    Article  Google Scholar 

  • Chandra S, Srivastava M (2003) Pteridology in the new millennium. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181

    Article  CAS  Google Scholar 

  • Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyper-accumulator Pteris vittata L. and its arsenic accumulation. Chinese Sci Bull 47:902–905

    Article  CAS  Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, Marcel Dekker, New York, pp 483–510

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Clements HF, Munson J (1947) Arsenic toxicity studies in soil and in culture solution. Pacific Sci 1:151–171

    CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants; defence against oxidative stress. Z Naturforsch 54c:730–734

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Cumming JR, Taylor GJ (1990) Mechanisms of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley, New York, pp 329–356

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640

    Article  PubMed  CAS  Google Scholar 

  • Ernst W (1976) Physiological and biochemical aspects of metal tolerance. In: Mansfield TA (ed) Effects of air pollutants on plants. Cambridge University Press, Cambridge, pp 115–133

    Google Scholar 

  • Ernst WHO (1997a) Population dynamics of plants under exposure and the selection of resistance. In: Schüürmann G, Markert B (eds) Ecotoxicology. Ecological fundamentals, chemical exposure, and biological effects. Wiley, New York, pp 117–132

    Google Scholar 

  • Ernst WHO (1997b) Effects of heavy metals in plants at the cellular and organismic level. In: Schüürmann G, Markert B (eds) Ecotoxicology. Ecological fundamentals, chemical exposure, and biological effects. Wiley, New York, pp 587–620

    Google Scholar 

  • Fodor F (2002) Physiological responses of vascular plant to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicities and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 149–177

    Google Scholar 

  • Fowler BA (1983) Biological and environmental effects of arsenic. Elsevier Sci. Publ., Amsterdam

    Google Scholar 

  • Grill E, Gekeler W, Winnacker E-L, Zenk HH (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett 205:47–50

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Harris WG, Carlisle VW, Chesser SL (1987a) Clay mineralogy as related to morphology of Florida soils with sandy epipedons. Soil Sci Soc Am J 51:1673–1677

    Article  CAS  Google Scholar 

  • Harris WG, Carlisle VW, van Rees KCJ (1987b) Pedon zonation of hydroxy-interlayered minerals in Ultic Haplaquods. Soil Sci Soc Am J 51:1367–1372

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001a) Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  CAS  Google Scholar 

  • Jacobs LW, Keeney DR (1970) Arsenic-phosphorus interactions in corn. Commu Soil Sci Plant Analy 1:85–93

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, p 413

    Google Scholar 

  • Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57(10):769–774

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CD, Gonsalves FAN (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+efflux of excised roots. J Exp Bot 38:800–817

    Article  CAS  Google Scholar 

  • Kenyon DJ, Elfving DC, Pakkala IS, Bache CA, Lisk DJ (1979) Residues of Lead and Arsenic in crops cultured on old orchard soils. Bul Environ Contam Toxicol 22:221–223

    Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiol 107:515–521

    PubMed  CAS  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    Article  CAS  Google Scholar 

  • Kooijman SALM (1997) Process-oriented descriptions of toxic effects. In: Schüürmann G, Markert B (eds) Ecotoxicology. Ecological fundamentals, chemical exposure, and biological effects. Wiley, New York, pp 483–520

    Google Scholar 

  • Lui Yl, Xu Y, Ke-Bing D, Tu BK (2012) Absorption and metabolism mechanisms of inorganic arsenic in plants: a review. Ying Yong Sheng Tai Xue Bao 23(3):842–848

    Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  • Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129

    Article  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to Class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Moreno-Jimenez E, Esteban E, Penalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37

    Article  PubMed  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Indust Micro biol 14:186–199

    Article  CAS  Google Scholar 

  • Odjegba VJ (2012) Exogenous salicylic acid alleviates arsenic toxicity in Arabidopsis thaliana. Indian J Innovations Dev 1(7):516–522

    Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    PubMed  CAS  Google Scholar 

  • Palmgren M (2001) Plant plasma membrane H+-ATPase: powerhous for nutrient uptake. Ann Rev Plant Physiol Mol Biol 52:817–845

    Article  CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Residue 16:1247–1253

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Reddy GN, Prasad NMV (1990) Heavy metal-binding proteins/peptides: occurrence, structure, synthesis and functions. A review. Environ Exp Bot 30:251–264

    Article  CAS  Google Scholar 

  • Rhue RD, Harris WG, Kidder G, Brown RB, Littell RC (1994) A soil based phosphorous retention index for animal waste disposal on sandy soil. Final project report. Florida Depart Environ Protec EPA grant no.9004984910

    Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microb 7:207–212

    Article  CAS  Google Scholar 

  • Rumberg CB, Engel RE, Meggitt WF (1960) Effect of phosphorus concentration on the absorption of arsenate by oats from nutrient solution. Agronomy J 52:452–453

    Article  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895

    Article  CAS  Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Sturchio E, Boccia P, Meconi C, Zanellato M, Marconi S, Beni C, Aromolo R, Ciampa A, Diana G, Valentini M (2011) Effects of arsenic on soil-plant systems. Chem Ecol 27(1):67–78

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on Heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engineer 2011: doi:10.1155/2011/939161

    Google Scholar 

  • Tomaszewska B, Tukendorf A, Baralkiewicz D (1996) The synthesis of phytochelatins in lupin roots treated with lead ions. Sci Legume 3:206–217

    CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate and vanadate associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Woolson EA (1983) Emissions, cycling, and effects of arsenic in soil ecosystems. Elsevier, Amsterdam, pp 52–125

    Google Scholar 

  • Zhao F, MecGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rasool, S., Rehman, M., Mahgoub Azooz, M., Iqbal, M., Siddiqi, T., Ahmad, P. (2013). Arsenic Toxicity and Tolerance Mechanisms in Plants: An Overview. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_12

Download citation

Publish with us

Policies and ethics

Navigation