Complement System Activation in Cardiac and Skeletal Muscle Pathology: Friend or Foe?

  • Chapter
  • First Online:
Complement Therapeutics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 735))

Abstract

A major goal in current cardiology practice is to determine optimal strategies for minimizing myocardial necrosis and optimizing cardiac repair following an acute myocardial infarction. Temporally regulated activation and suppression of innate immunity may be critical for achieving this goal. Extensive experimental data in various animal models have indicated that inhibiting complement activation offers protection to cardiac tissue after ischemia/reperfusion. However, the results of clinical studies using complement inhibitors (mainly at the C5 level) in patients with acute myocardial infarction have largely been disappointing.

In cases in which complement activation participates in the initial events of muscle cell destruction, as in autoimmune myocarditis or autoimmune muscle disorders, inhibition of complement activation is expected to prove a successful treatment. In other pathologic conditions in which complement is recruited by degenerating or dying muscle cells, as in ischemia, the ideal approach is probably to modulate rather than abruptly blunt complement activation. Beneficial effects of complement action with regard to waste disposal, recruitment of stem cells, regeneration, angiogenesis, and better utilization of energy sources under hypoxic conditions may also prove important for successful disease treatment. Patient outcome after myocardial infarction almost certainly depend upon the combined activation of several distinct but potentially interrelated signaling pathways, suggesting that a combination of treatments targeted to different pathways should be the therapy of choice, and modulation of complement could be one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott JD, Huang Y et al (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110(21):3300–3305

    Article  PubMed  Google Scholar 

  • Askari AT, Unzek S et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362(9385):697–703

    Article  CAS  PubMed  Google Scholar 

  • Basta M, Dalakas MC (1994) High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 94(5): 1729–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenacchi G, Fanin M et al (2005) Ultrastructural changes in dysferlinopathy support defective membrane repair mechanism. J Clin Pathol 58(2):190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain-Banoub J, Neal JW et al (2006) Complement membrane attack is required for endplate damage and ­clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin Exp Immunol 146(2):278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Tummala PE et al (1998) Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 83(9):952–959

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Kurtz A et al (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Collins RA, Grounds MD (2001) The role of tumor necrosis factor-alpha (TNF-alpha) in skeletal muscle regeneration. Studies in TNF-alpha(−/−) and TNF-alpha(−/−)/LT-alpha(−/−) mice. J Histochem Cytochem 49(8):989–1001

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Salani S et al (2001) Chemotactic factors enhance myogenic cell migration across an endothelial monolayer. Exp Cell Res 268(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Crawford MH, Grover FL et al (1988) Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation 78(6):1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Dalakas MC (2010a) Immunotherapy of myositis: issues, concerns and future prospects. Nat Rev Rheumatol 6(3):129–137

    Article  PubMed  Google Scholar 

  • Dalakas MC (2010b) Inflammatory muscle diseases: a critical review on pathogenesis and therapies. Curr Opin Pharmacol 10(3):346–352

    Article  CAS  PubMed  Google Scholar 

  • Diepenhorst GM, van Gulik TM et al (2009) Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann Surg 249(6):889–899

    Article  PubMed  Google Scholar 

  • Emslie-Smith AM, Engel AG (1990) Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol 27(4):343–356

    Article  CAS  PubMed  Google Scholar 

  • Engler R (1987) Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46(7):2407–2412

    CAS  PubMed  Google Scholar 

  • Eriksson U, Kurrer MO et al (2003) Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation 107(2):320–325

    Article  CAS  PubMed  Google Scholar 

  • Faraj M, Cianflone K (2004) Differential regulation of fatty acid trap** in mouse adipose tissue and muscle by ASP. Am J Physiol Endocrinol Metab 287(1):E150–E159

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo E, Rojas-Garcia R et al (2001) Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology 57(11):2136–2138

    Article  CAS  PubMed  Google Scholar 

  • Gasque P, Morgan BP et al (1996) Human skeletal myoblasts spontaneously activate allogeneic complement but are resistant to killing. J Immunol 156(9):3402–3411

    CAS  PubMed  Google Scholar 

  • Han R, Frett EM et al (2010) Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest 120(12):4366–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Atkinson C et al (2009) A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J Clin Invest 119(8):2304–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JH, Ward PA (1971) The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133(4):885–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirahashi J, Mekala D et al (2006) Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 25(2):271–283

    Article  CAS  PubMed  Google Scholar 

  • Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81(3):457–464

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Sharma MC et al (2011) Detection of the membrane attack complex as a diagnostic tool in dermatomyositis. Acta Neurol Scand 123(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Jennings RB, Murry CE et al (1990) Development of cell injury in sustained acute ischemia. Circulation 82(3 Suppl):II2–II12

    CAS  PubMed  Google Scholar 

  • Jennings RB, Steenbergen C Jr et al (1995) Myocardial ischemia and reperfusion. Monogr Pathol 37:47–80

    CAS  PubMed  Google Scholar 

  • Jiang B, Liao R (2010) The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res 3(4):410–416

    Article  PubMed  Google Scholar 

  • Kaya Z, Afanasyeva M et al (2001) Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat Immunol 2(8):739–745

    Article  CAS  PubMed  Google Scholar 

  • Kilgore KS, Homeister JW et al (1994) Sulfhydryl compounds, captopril, and MPG inhibit complement-mediated myocardial injury. Am J Physiol 266(1 Pt 2):H28–H35

    CAS  PubMed  Google Scholar 

  • Kimura Y, Madhavan M et al (2003) Expression of complement 3 and complement 5 in newt limb and lens regeneration. J Immunol 170(5):2331–2339

    Article  CAS  PubMed  Google Scholar 

  • Kissel JT, Mendell JR et al (1986) Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 314(6):329–334

    Article  CAS  PubMed  Google Scholar 

  • Law SK, Gagnon J et al (1987) The primary structure of the beta-subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and p150,95 and its relationship to the fibronectin receptor. EMBO J 6(4):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legoedec J, Gasque P et al (1995) Expression of the complement alternative pathway by human myoblasts in vitro: biosynthesis of C3, factor B, factor H and factor I. Eur J Immunol 25(12):3460–3466

    Article  CAS  PubMed  Google Scholar 

  • Legoedec J, Gasque P et al (1997) Complement classical pathway expression by human skeletal myoblasts in vitro. Mol Immunol 34(10):735–741

    Article  CAS  PubMed  Google Scholar 

  • Leivo I, Engvall E (1986) C3d fragment of complement interacts with laminin and binds to basement membranes of glomerulus and trophoblast. J Cell Biol 103(3):1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Lennon VA, Seybold ME et al (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 147(4):973–983

    Article  CAS  PubMed  Google Scholar 

  • Lennon NJ, Kho A et al (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278(50):50466–50473

    Article  CAS  PubMed  Google Scholar 

  • Li X, Moody MR et al (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102(14):1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Aoki M et al (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Jones D, Adams R et al (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):480–486

    Article  PubMed  Google Scholar 

  • Long KK, Pavlath GK et al (2011) Sca-1 influences the innate immune response during skeletal muscle regeneration. Am J Physiol Cell Physiol 300(2):C287–C294

    Article  CAS  PubMed  Google Scholar 

  • MacLaren R, Cui W et al (2008) Adipokines and the immune system: an adipocentric view. Adv Exp Med Biol 632:1–21

    Article  CAS  PubMed  Google Scholar 

  • Markiewski MM, Mastellos D et al (2004) C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury. J Immunol 173(2):747–754

    Article  CAS  PubMed  Google Scholar 

  • Markiewski MM, DeAngelis RA et al (2009) The regulation of liver cell survival by complement. J Immunol 182(9):5412–5418

    Article  CAS  PubMed  Google Scholar 

  • Mavroidis M, Capetanaki Y (2002) Extensive induction of important mediators of fibrosis and dystrophic calcification in desmin-deficient cardiomyopathy. Am J Pathol 160(3):943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mevorach D, Mascarenhas JO et al (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188(12):2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HX, Tidball JG (2003) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J Physiol 547(Pt 1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Nozaki M, Raisler BJ et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103(7):2328–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksjoki R, Kovanen PT et al (2007) Function and regulation of the complement system in cardiovascular diseases. Front Biosci 12:4696–4708

    Article  CAS  PubMed  Google Scholar 

  • Oram JF, Bennetch SL et al (1973) Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 248(15):5299–5309

    CAS  PubMed  Google Scholar 

  • Psarras S, Mavroidis M et al (2011) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J [Epub ahead of print]. doi:10.1093/eurheart/ehr119

    Google Scholar 

  • Qi H, Tuzun E et al (2008) C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol 196(1–2):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabi M, Kassiotis C et al (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12(3–4):331–343

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ, Reca R et al (2006) Modulation of the SDF-1-CXCR4 axis by the third complement component (C3) – implications for trafficking of CXCR4+ stem cells. Exp Hematol 34(8):986–995

    Article  CAS  PubMed  Google Scholar 

  • Rawat R, Cohen TV et al (2010) Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol 176(6):2891–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezkalla SH, Kloner RA (2002) No-reflow phenomenon. Circulation 105(5):656–662

    Article  PubMed  Google Scholar 

  • Sahashi K, Engel AG et al (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 39(2):160–172

    Article  CAS  PubMed  Google Scholar 

  • Saraste A, Pulkki K et al (1997) Apoptosis in human acute myocardial infarction. Circulation 95(2):320–323

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119(10):1355–1357

    Article  PubMed  Google Scholar 

  • Soltys J, Kusner LL et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65(1):67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitzer D, Unsinger J et al (2004) ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol Immunol 40(13):911–919

    Article  CAS  PubMed  Google Scholar 

  • Spuler S, Engel AG (1998) Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology 50(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Aoki M et al (2005) Expression profiling with progression of dystrophic change in dysferlin-deficient mice (SJL). Neurosci Res 52(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, McGowan BS et al (2004) Gene expression profiling during the transition to failure in TNF-alpha over-expressing mice demonstrates the development of autoimmune myocarditis. J Mol Cell Cardiol 36(4):515–530

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288(2):R345–R353

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298(5):R1173–R1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578(Pt 1):327–336

    Article  CAS  PubMed  Google Scholar 

  • Tsonis PA, Del Rio-Tsonis K et al (1996) Can insights into urodele limb regeneration be achieved with cell cultures and retroviruses? Int J Dev Biol 40(4):813–816

    CAS  PubMed  Google Scholar 

  • Tuzun E, Scott BG et al (2003) Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J Immunol 171(7):3847–3854

    Article  PubMed  Google Scholar 

  • Tuzun E, Scott BG et al (2004) Circulating immune complexes augment severity of antibody-mediated myasthenia gravis in hypogammaglobulinemic RIIIS/J mice. J Immunol 172(9):5743–5752

    Article  PubMed  Google Scholar 

  • Tuzun E, Li J et al (2007) Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J Neuroimmunol 182(1–2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Vandervelde S, van Luyn MJ et al (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39(2):363–376

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Venkatesan B et al (2009) WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. J Biol Chem 284(21):14414–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalta SA, Nguyen HX et al (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496

    Article  CAS  PubMed  Google Scholar 

  • Vincent A, Drachman DB (2002) Myasthenia gravis. Adv Neurol 88:159–188

    CAS  PubMed  Google Scholar 

  • Wenzel K, Zabojszcza J et al (2005) Increased susceptibility to complement attack due to down-regulation of decay-accelerating factor/CD55 in dysferlin-deficient muscular dystrophy. J Immunol 175(9):6219–6225

    Article  CAS  PubMed  Google Scholar 

  • Yasojima K, Kilgore KS et al (1998) Complement gene expression by rabbit heart: upregulation by ischemia and ­reperfusion. Circ Res 82(11):1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Gong B et al (2007) Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 179(12):8562–8567

    Article  CAS  PubMed  Google Scholar 

  • Zwaka TP, Manolov D et al (2002) Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am J Pathol 161(2):449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Mavroidis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Syriga, M., Mavroidis, M. (2013). Complement System Activation in Cardiac and Skeletal Muscle Pathology: Friend or Foe?. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_14

Download citation

Publish with us

Policies and ethics

Navigation