The Neurobiological Correlates of Meditation and Mindfulness

  • Chapter
  • First Online:
Exploring Frontiers of the Mind-Brain Relationship

Part of the book series: Mindfulness in Behavioral Health ((MIBH))

Abstract

Mindfulness refers to a calm awareness of cognitions, sensations, ­emotions, and experiences. This state is frequently achieved through mindfulness meditation (MM) which is a practice that cultivates non-judgmental awareness of the present moment. MM has also become widely used in a variety of psychological, medical, and wellness populations. Recently, there have been a number of studies that have elucidated some of the neurophysiological processes involved with MM and other similar meditation practices. This chapter provides a review of that literature, which includes neuroanatomy, neurophysiology, neurotransmitter systems, and recent brain-imaging advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adair, K. C., Gilmore, R. L., Fennell, E. B., Gold M., & Heilman, K. M. (1995). Anosognosia during intracarotid barbiturate anaesthesia: Unawareness or amnesia for weakness. Neurology, 45, 241–243.

    PubMed  Google Scholar 

  • Aghajanian, G., Sprouse, J., & Rasmussen, K. (1987). Physiology of the midbrain serotonin system. In H. Meltzer (Ed.), Psychopharmacology, the third generation of progress (pp. 141–149). New York: Raven Press.

    Google Scholar 

  • Albin, R., & Greenamyre, J. (1992). Alternative excitotoxic hypotheses. Neurology, 42, 733–738.

    PubMed  Google Scholar 

  • Andrews, T. J., Halpern, S. D., & Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. Journal of Neuroscience, 17, 2859–2868.

    PubMed  Google Scholar 

  • Armony, J. L., & LeDoux, J. E. (2000). In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 1073–1074). Cambridge: MIT Press.

    Google Scholar 

  • Baer, R. A. (2003). Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical Psychology: Science and Practice, 10, 125–143.

    Article  Google Scholar 

  • Baerentsen, K. B., Stødkilde-Jørgensen, H., Sommerlund, B., Hartmann T., Damsgaard-Madsen J., Fosnaes M., & Green, A.C. (2010). An investigation of brain processes supporting meditation. Cognitive Processing, 11(1), 57–84.

    Article  PubMed  Google Scholar 

  • Brefczynaki-Lewis, J. A., Lutz, A., Schaefer H. S, Levinson D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the USA, 104, 11483–11488.

    Article  Google Scholar 

  • Bucci, D. J., Conley, M., & Gallagher, M. (1999). Thalamic and basal forebrain cholinergic connections of the rat posterior parietal cortex. Neuroreport, 10, 941–945.

    Article  PubMed  Google Scholar 

  • Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211.

    Article  PubMed  Google Scholar 

  • Cheramy, A., Romo, R., & Glowinski, J. (1987). Role of corticostriatal glutamatergic neurons in the presynaptic control of dopamine release. In Sandler, M., Feuerstein, C., & Scatton, B.(Eds.), Neurotransmitter interactions in the basal ganglia. New York: Raven.

    Google Scholar 

  • Chow, T. W., & Cummings, J. L. (1999). In B. L. Miller, & J. L. Cummings (Eds.), The human frontal lobes (pp. 3–26). New York: Guilford Press.

    Google Scholar 

  • Cornwall, J., & Phillipson, O. T. (1988). Mediodorsal and reticular thalamic nuclei receive collateral axons from prefrontal cortex and laterodorsal tegmental nucleus in the rat. Neuroscience Letters, 88, 121–126.

    Article  PubMed  Google Scholar 

  • Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69, 560–565.

    Article  PubMed  Google Scholar 

  • Davies, E., Keyon, C. J., & Fraser, R. (1985). The role of calcium ions in the mechanism of ACTH stimulation of cortisol synthesis. Steroids, 45, 557.

    Article  Google Scholar 

  • Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.

    PubMed  Google Scholar 

  • Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.

    Article  PubMed  Google Scholar 

  • Elias, A. N., Guich, S., & Wilson, A. F. (2000). Ketosis with enhanced GABAergic tone promotes physiological changes in transcendental meditation. Medical Hypotheses, 54, 660–662.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D., & Posner, M. I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental Neuropsychology, 23, 74–93.

    Article  PubMed  Google Scholar 

  • Fish, D. R., Gloor, P., Quesney, F. L., & Olivier, A. (1993). Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Brain, 116, 397–414.

    Article  PubMed  Google Scholar 

  • Foote, S. (1987). Extrathalamic modulation of cortical function. Annual Review of Neuroscience, 10, 67–95.

    Article  PubMed  Google Scholar 

  • Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. (1991). Willed action and the prefrontal cortex in man a study with PET. Proceedings of the Royal Society of London, 244, 241–246.

    Article  Google Scholar 

  • Gellhorn, E., & Kiely, W. F. (1972). Mystical states of consciousness: Neurophysiological and clinical aspects. The Journal of Nervous and Mental Disease, 154, 399–405.

    Article  PubMed  Google Scholar 

  • Herzog, H., Lele, V. R., Kuwert, T., Langen K. J, Rota Kops E, & Feinendegen, L. E. (1990–1991). Changed pattern of regional glucose metabolism during Yoga meditative relaxation. Neuropsychobiol, 23, 182–187.

    Google Scholar 

  • Hugdahl, K. (1996). Cognitive influences on human autonomic nervous system function. Current Opinion in Neurobiology, 6, 252–258.

    Article  PubMed  Google Scholar 

  • Infante, J. R., Peran, F., Martinez, M., Roldan, A., Poyatos, R., Ruiz, C., Samaniego, F., & Garrido, F. (1998). ACTH and beta-endorphin in transcendental meditation. Physiology and Behavior, 64, 311–315.

    Article  PubMed  Google Scholar 

  • Infante, J. R., Torres-Avisbal, M., Pinel, P., Vallejo, J. A., Peran, F., Gonzalez, F., Contreras, p., Pacheco, C., Roldan, A., & Latre, J.M. (2001). Catecholamine levels in practitioners of the transcendental meditation technique. Physiology and Behavior, 72, 141–146.

    Article  PubMed  Google Scholar 

  • Ingvar, D. H. (1994). The will of the brain: Cerebral correlates of willful acts. Journal of Theoretical Biology, 171, 7–12.

    Article  PubMed  Google Scholar 

  • Ivanovski, B., & Malhi, G. S. (2007). The psychological and neurophysiological concomitants of mindfulness forms of meditation. Acta Neuropsychiatrica, 19, 76–91.

    Article  Google Scholar 

  • Janal, M. N., Colt, E. W., Clark, W. C., Glusman, M. (1984). Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naxalone. Pain, 19, 13–25.

    Article  PubMed  Google Scholar 

  • Jevning, R., Wallace, R. K., & Beidebach, M. (1992). The physiology of meditation: A review. A wakeful hypometabolic integrated response. Neuroscience and Biobehavioral Reviews, 16, 415–424.

    Article  PubMed  Google Scholar 

  • Jevning, R., Wilson, A. F., & Davidson, J. M. (1978). Adrenocortical activity during meditation. Hormones and Behavior, 10, 54–60.

    Article  PubMed  Google Scholar 

  • Jevtovic-Todorovic, V., Wozniak, D. F., Benshoff, N. D., & Olney, J. W. (2001). A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Research, 895, 264–267.

    Article  PubMed  Google Scholar 

  • Joseph, R. (1996). Neuropsychology, neuropsychiatry, and behavioral neurology (p. 197). New York: Williams & Wilkins.

    Google Scholar 

  • Juckel, G. J., Mendlin, A., & Jacobs, B. L. (1999). Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: Implications for electroconvulsive therapy and transcranial magnetic stimulation in depression. Neuropsychopharmacology, 21, 391–398.

    Article  PubMed  Google Scholar 

  • Kakigi, R., Nakata, H., Inui, K., Hiroe, N., Nagata, O., Honda, M., Tanaka, S., Sadato, N., & Kawakami, M. (2005). Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation. European Journal of Pain, 9(5), 581–589.

    Article  PubMed  Google Scholar 

  • Karnath, H. O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411, 950–953.

    Article  PubMed  Google Scholar 

  • Kiss, J., Kocsis, K., Csaki, A., Gorcs, T. J., & Halasz, B. (1997). Metabotropic glutamate receptor in GHRH and beta-endorphin neurons of the hypothalamic arcuate nucleus. Neuroreport, 8, 3703–3707.

    Article  PubMed  Google Scholar 

  • Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. (2002). Increased dopamine tone during meditation-induced change of consciousness. Brain Research. Cognitive Brain Research, 13(2), 255–259.

    Article  PubMed  Google Scholar 

  • Lazar, S. W., Bush, G., Gollub, R. L., Fricchione, G. L, Khalsa, G., & Benson, H. (2000). Functional brain map** of the relaxation response and meditation. Neuroreport, 11, 1581–1585.

    Article  PubMed  Google Scholar 

  • Leite, J. R., Ornellas, F. L., Amemiya, T. M., de Almeida, A. A., Dias, A. A., Afonso, R., Little, S., & Kozasa, E.H. (2010). Effect of progressive self-focus meditation on attention, anxiety, and depression scores. Perceptual and Motor Skills, 110(3 Pt 1), 840–848.

    Article  PubMed  Google Scholar 

  • Lieberman, M. D., Eisenberger, N. I., Crocket, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdale activity in response to affective stimuli. Psychological Science, 18, 421–428.

    Article  PubMed  Google Scholar 

  • Livesey, J. H., Evans, M. J., Mulligan, R., & Donald, R. A. (2000). Interactions of CRH, AVP and cortisol in the secretion of ACTH from perifused equine anterior pituitary cells: “Permissive” roles for cortisol and CRH. Endocrine Research, 26, 445–463.

    PubMed  Google Scholar 

  • Lou, H. C., Kjaer, T. W., Friberg, L., Wildschiodtz, G., Holm, S., & Nowak, M. (1999). A 15O-H2O PET study of meditation and the resting state of normal consciousness. Human Brain Map**, 7, 98–105.

    Article  PubMed  Google Scholar 

  • Lutz, A., Greischar, L. L., Perlman, D. M., & Davidson, R. J. (2009). BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices. NeuroImage, 47(3), 1038–1046.

    Article  PubMed  Google Scholar 

  • Lynch, J. C. (1980). The functional organization of posterior parietal association cortex. Behavior Brain Science, 3, 485–499.

    Article  Google Scholar 

  • Manfridi, A., Brambilla, D., & Mancia, M. (1999). Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. American Journal of Physiology, 277, R1488–R1492.

    PubMed  Google Scholar 

  • Moller, M. (1992). Fine structure of pinealopetal innervation of the mammalian pineal gland. Microscopy Research and Technique, 21, 188–204.

    Article  PubMed  Google Scholar 

  • Monti, D. A., Peterson, C., Kunkel, E. J., Hauck, W. W., Pequignot, E., Rhodes, L., & Brainard, G. C. (2006). A randomized controlled trial of ­mindfulness-based art therapy for women with cancer. Psycho-Oncology, 15(5), 363–373.

    Article  PubMed  Google Scholar 

  • Mountcastle, V. B., Motter, B. C., & Anderson, R. A. (1980). Some further observations on the functional properties of neurons in the parietal lobe of the waking monkey. Brain Behavior Science, 3, 520–523.

    Article  Google Scholar 

  • Newberg, A., Alavi, A., Baime, M., Pourdehnad, M., Santanna, J., & d’Aquili, E. (2001). The measurement of regional cerebral blood flow during the complex cognitive task of meditation: A preliminary SPECT study. Psychiatry Research: Neuroimaging, 106, 113–122.

    Article  PubMed  Google Scholar 

  • Newberg, A. B., & Iversen, J. (2003). The neural basis of the complex mental task of meditation: Neurotransmitter and neurochemical considerations. Medical Hypotheses, 61(2), 282–291.

    Article  PubMed  Google Scholar 

  • Newberg, A., Pourdehnad, M., Alavi, A., & d’Aquili, E. (2003). Cerebral blood flow during meditative prayer: Preliminary findings and methodological issues. Perceptual and Motor Skills, 97, 625–630.

    PubMed  Google Scholar 

  • Newman, J., & Grace, A. A. (1999). Binding across time: The selective gating of frontal and hippocampal systems modulating working memory and attentional states. Consciousness and Cognition, 8, 196–212.

    Article  PubMed  Google Scholar 

  • O’Halloran, J. P., Jevning, R., Wilson, A. F., Skowsky, R., Walsh, R. N., & Alexander, C. (1985). Hormonal control in a state of decreased activation: Potentiation of arginine vasopressin secretion. Physiology and Behavior, 35, 591–595.

    Article  PubMed  Google Scholar 

  • Olds, M. E., & Forbes, J. L. (1981). The central basis of motivation, intracranial self-stimulation studies. Annual Review of Psychology, 32, 523–574.

    Article  PubMed  Google Scholar 

  • Orme-Johnson, D. W., Schneider, R. H., Son, Y. D., Nidich, S., & Cho, Z. H. (2006). Neuroimaging of meditation’s effect on brain reactivity to pain. Neuroreport, 17(12), 1359–1363.

    Article  PubMed  Google Scholar 

  • Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge: MIT Press.

    Google Scholar 

  • Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–64.

    Article  PubMed  Google Scholar 

  • Peng, C. K., Mietus, J. E., Liu, Y., Khalsa, G., Douglas, P. S., Benson, H., & Goldberger, A. L. (1999). Exaggerates heart rate oscillations during two meditation techniques. International Journal of Cardiology, 70, 101–107.

    Article  PubMed  Google Scholar 

  • Peres, J. F., Foerster, B., Santana, L. G., Fereira, M. D., Nasello, A. G., Savoia, M., Moreira-Almeida, A., & Lederman, H. (2011). Police officers under attack: Resilience implications of an fMRI study. Journal of Psychiatric Research, 45(6), 727–734.

    Article  PubMed  Google Scholar 

  • Peres, J., Mercante, J., & Nasello, A. G. (2005). Psychological dynamics affecting traumatic memories: Implications in psychotherapy. Psychology and Psychotherapy, 78(4), 431–447.

    Article  PubMed  Google Scholar 

  • Peres, J. F., Newberg, A. B., Mercante, J. P., Simão, M., Albuquerque, V. E., Peres, M. J., & Nasello, A. G. (2007). Cerebral blood flow changes during retrieval of traumatic memories before and after psychotherapy: A SPECT study. Psychological Medicine, 37(10), 1481–1491.

    Article  PubMed  Google Scholar 

  • Peterson, J., Loizzo, J., & Charlson, M. (2009). A program in contemplative self-healing: Stress, allostasis, and learning in the Indo-Tibetan tradition. Annals of the New York Academy of Sciences, 1172, 123–147.

    Article  PubMed  Google Scholar 

  • Pietrowsky, R., Braun, D., Fehm, H. L., Pauschinger, P., & Born, J. (1991). Vasopressin and oxytocin do not influence early sensory processing but affect mood and activation in man. Peptides, 12, 1385–1391.

    Article  PubMed  Google Scholar 

  • Poletti, C. E., & Sujatanond, M. (1980). Evidence for a second hippocampal efferent pathway to hypothalamus and basal forebrain comparable to fornix system: A unit study in the monkey. Journal of Neurophysiology, 44, 514–531.

    PubMed  Google Scholar 

  • Portas, C. M., Rees, G., Howseman, A. M., Josephs, O., Turner, R., & Frith, C. D. (1998). A specific role for the thalamus in mediating the interaction attention and arousal in humans. Journal of Neuroscience, 18, 8979–8989.

    PubMed  Google Scholar 

  • Ramachandran, V. S., Armel, C., & Foster, C. (1998). Object recognition can drive motion perception. Nature, 395, 852–853.

    Article  PubMed  Google Scholar 

  • Ramachandran, V. S., & Gregory, R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature, 350, 699–702.

    Article  PubMed  Google Scholar 

  • Redding, F. K. (1967). Modification of sensory cortical evoked potentials by hippocampal stimulation. Electroencephalograph and Clinical Neurophysiology, 22, 74–83.

    Article  Google Scholar 

  • Renaud, L. P. (1996). CNS pathways mediating cardiovascular regulation of vasopressin. Clinical and Experimental Pharmacology and Physiology, 23, 157–160.

    Article  PubMed  Google Scholar 

  • Saver, J. L., & Rabin, J. (1997). The neural substrates of religious experience. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 498–510.

    PubMed  Google Scholar 

  • Shaji, A. V., & Kulkarni, S. K. (1998). Central nervous system depressant activities of melatonin in rats and mice. Indian Journal of Experimental Biology, 36, 257–263.

    PubMed  Google Scholar 

  • Sim, M. K., & Tsoi, W. F. (1992). The effects of centrally acting drugs on the EEG correlates of meditation. Biofeedback and Self-Regulation, 17, 215–220.

    Article  PubMed  Google Scholar 

  • Speca, M., Carlson, L. E., Goodey, E., & Angen, M. (2000). A randomized, wait-list controlled clinical trial: The effect of a mindfulness meditation-based stress reduction program on mood and symptoms of stress in cancer outpatients. Psychosomatic Medicine, 62(5), 613–622.

    PubMed  Google Scholar 

  • Sudsuang, R., Chentanez, V., & Veluvan, K. (1991). Effects of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume an reaction time. Physiology and Behavior, 50, 543–548.

    Article  PubMed  Google Scholar 

  • Thomas, A. G., Vornov, J. J., Olkowski, J. L., Merion, A. T., & Slusher, B. S. (2000). N-Acetylated alpha-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. Journal of Pharmacology and Experimental Therapeutics, 295, 16–22.

    PubMed  Google Scholar 

  • Travis, F. (2001). Autonomic and EEG patterns distinguish transcending from other experiences during transcendental meditation practice. International Journal of Psychophysiology, 42, 1–9.

    Article  PubMed  Google Scholar 

  • Van Bockstaele, E. J., & Aston-Jones, G. (1995). Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clinical and Experimental Hypertension, 17, 153–165.

    Article  PubMed  Google Scholar 

  • Van Praag, H., & De Haan, S. (1980). Depression vulnerability and 5-Hydroxytryptophan prophylaxis. Psychiatry Research, 3, 75–83.

    Article  PubMed  Google Scholar 

  • Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.

    PubMed  Google Scholar 

  • Vollenweider, F. X., Leenders, K. L., Scharfetter, C., Antonini, A., Maguire, P., Missimer, J., & Angst, J. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7, 9–24.

    Article  PubMed  Google Scholar 

  • Vollenweider, F. X., Vontobel, P., Hell, D., & Leenders, K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride. Neuropsychopharmacology, 20, 424–433.

    Article  PubMed  Google Scholar 

  • Walton, K. G., Pugh, N. D., Gelderloos, P., & Macrae, P. (1995). Stress reduction and preventing hypertension: Preliminary support for a psychoneuroendocrine mechanism. Journal of Alternative and Complementary Medicine, 1, 263–283.

    Article  Google Scholar 

  • Waterhouse, B. D., Moises, H. C., & Woodward, D. J. (1998). Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Research, 790, 33–44.

    Article  PubMed  Google Scholar 

  • Weingartner, H., Gold, P., Ballenger, J. C., Smallberg, S. A., Summers, R., Rubinow, D. R., Post, R. M., & Goodwin, F. K. (1981). Effects of vasopressin on human memory functions. Science, 211, 601–603.

    Article  PubMed  Google Scholar 

  • Yadid, G., Zangen, A., Herzberg, U., Nakash, R., & Sagen, J. (2000). Alterations in endogenous brain beta-endorphin release by adrenal medullary transplants in the spinal cord. Neuropsychopharmacology, 23, 709–716.

    Article  PubMed  Google Scholar 

  • Zhelyazkova-Savova, M., Giovannini, M. G., & Pepeu, G. (1997). Increase of cortical acetylcholine release after systemic administration of chlorophenylpiperazine in the rat: An in vivo microdialysis study. Neuroscience Letters, 236, 151–154.

    Article  PubMed  Google Scholar 

  • Ziegler, D. R., Cass, W. A., & Herman, J. P. (1999). Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. Journal of Neuroendocrinology, 11, 361–369.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Newberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edwards, J., Peres, J., Monti, D.A., Newberg, A.B. (2012). The Neurobiological Correlates of Meditation and Mindfulness. In: Moreira-Almeida, A., Santana Santos, F. (eds) Exploring Frontiers of the Mind-Brain Relationship. Mindfulness in Behavioral Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0647-1_6

Download citation

Publish with us

Policies and ethics

Navigation