Grain-Boundary Diffusion Kinetics in Silicate and Oxide Minerals

  • Chapter
Diffusion, Atomic Ordering, and Mass Transport

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 8))

Abstract

Geologists have long held the belief that diffusion along grain boundaries in rocks would provide the means for mass transport over distances in the range of centimetres to metres needed to explain various metasomatic phenomena. Indeed, measured grain-boundary diffusion coefficients support this belief, as the ratio D GB i /D VOL i is commonly greater than 104 at metamorphic temperatures. To assess the role of grain-boundary diffusion in metamorphic processes this contribution:

  1. (1)

    reviews the current understanding of the nature of grain boundaries in oxides and silicates;

  2. (2)

    reviews the mathematical description of grain-boundary diffusion;

  3. (3)

    summarizes available grain-boundary diffusion data for oxides and silicates;

  4. (4)

    uses these results to explore the scale of mass transport by grain-boundary diffusion in metamorphic systems at geologic time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aines, R.D., and Rossman, G.R. (1984) Water in minerals? A peak in the infrared. J. Geophys. Res. 89, 4059–4071.

    Google Scholar 

  2. Atkinson, A. (1985) Grain boundary diffusion—Structural effects and mechanisms. J. de Phys. 46, C4-379–C4-391.

    Google Scholar 

  3. Atkinson, A., Hughes, A.E., and Hammou, A. (1981) The self-diffusion of Ni in undoped and Al-doped NiO single crystals. Philos. Mag. A 43,1071–1091.

    Google Scholar 

  4. Atkinson, A., Pummery, F.C.W., and Monty, C. (1985) Diffusion of O18 tracer in NiO grain boundaries, in Transport in Nonstoichiometric Compounds, edited by G. Sinkovich and V.S. Stubican. NATO ASI Ser. B, Physics 129, 359–370.

    Google Scholar 

  5. Atkinson, A., and Taylor, R.I. (1981) The diffusion of 63Ni along grain boundaries in nickel oxide. Philos. Mag. A 43, 979–998.

    Google Scholar 

  6. Atkinson, A., and Taylor, R.I. (1982) Diffusion of 57Co along grain boundaries in NiO. Philos. Mag. A 45, 583–592.

    Google Scholar 

  7. Atkinson, A., and Taylor, R.I. (1984) Diffusion of 51Cr tracer in Cr203 and the growth of Cr2O3 films, in Transport in Nonstoichiometric Compounds, edited by G. Sinkovich and V.S. Stubican, NATO ASI Ser. B, Physics 129, 285–295.

    Google Scholar 

  8. Atkinson, A., and Taylor, R.I. (1986) Impurity diffusion in NiO grain boundaries. J. Phys. Chem. Solids 41, 315–323.

    Google Scholar 

  9. Atkinson, A., Taylor, R.I., and Hughes, A.E. (1982) A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals. Philos. Mag. 45, 823–833.

    Google Scholar 

  10. Atkinson, H.V., and Duffy, D.M. (1986) Calculation of activation energies for defect movement during coincidence boundary migration in nickel oxide using computer simulation techniques. Acta Metall. 34, 2371–2380.

    Google Scholar 

  11. Azaroff, L.V. (1961) Role of crystal structure in diffusion. I. Diffusion paths in closest-packed crystals. J. Appl. Phys. 32, 1658–1662.

    Google Scholar 

  12. Balluffi, R.W. (editor) (1979) Grain-Boundary Structure and Kinetics. American Society of Metals, Metals Park, Ohio, 470 pp.

    Google Scholar 

  13. Balluffi, R.W. (1984) Grain boundary diffusion mechanisms in metals, in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick, pp. 319–377. Academic Press, Orlando.

    Google Scholar 

  14. Balluffi, R.W., Bristowe, P.D., and Brokman, A. (1983) Structure of large-angle grain boundaries in metals and ceramic oxides, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer. Adv. Ceram., vol. 6, pp. 15–35. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  15. Balluffi, R.W., Brokman, A., and King, A.H. (1982) CSL/DSC lattice model for general crystal-crystal boundaries and their line defects. Acta Metall. 30, 1453–1470.

    Google Scholar 

  16. Bannister, M.J. (1967) Interdependence of pore removal and grain growth during the later stages of sintering in beryllium oxide, in Sintering and Related Phenomena, Materials Science Research, vol. 6, edited by G.C. Kuczynski, N.A. Hooten, and N.F. Gibbon, pp. 581–605. Gordon and Breach, New York.

    Google Scholar 

  17. Bollmann, W. (1970) Crystal Defects and Crystalline Interfaces. Springer-Verlag, New York, 255 pp.

    Google Scholar 

  18. Bourret, A., d’Anterroches, C., and Penisson, J.M. (1982) Structure des joints en microscopie electronique haute resolution (MHER). J. de Phys. 43, C6-83–C6-90.

    Google Scholar 

  19. Bradhurst, D.H., and De Bruin, H.J. (1969) Measurement of self-diffusion of oxygen in beryllium oxide by proton activation of oxygen-18. J. Aust. Ceram. Soc. 5, 21–27.

    Google Scholar 

  20. Brady, J.B. (1983) Intergranular diffusion in metamorphic rocks. Amer. J. Sci. 283A (Orville Volume), 181–200.

    Google Scholar 

  21. Brokman, A., and Balluffi, R.W. (1981) Coincidence lattice model for the structure and energy of grain boundaries. Acta Metall. 29, 1703–1719.[10]

    Google Scholar 

  22. Cannon, R.M., Rhodes, W.H., and Heuer, A.H. (1980) Plastic deformation of fine grained alumina (A1203): I. Interface-controlled diffusional creep. J. Amer. Ceram. Soc. 63, 46–53.

    Google Scholar 

  23. Carter, C.B. (1984) The structure of grain boundaries and phase boundaries in ceramics, in Electron Microscopy of Materials, edited by W. Krakow, D.A. Smith, and L.W. Hobbs, pp. 267–278. Mat. Res. Soc. Symp. Proc. 31. North-Holland, New York.

    Google Scholar 

  24. Carter, C.B., and Elgat, Z. (1983) Migration of grain boundaries in Si and Ge, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer, Adv. Ceram., vol. 6, pp. 192–201. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  25. Carter, C.B., Kohlstedt, D.L., and Sass, S.L., (1980). Electron diffraction and micros¬copy studies of the structure of grain boundaries in A1203. J. Amer. Ceram. Soc. 63, 623–627.

    Google Scholar 

  26. Carter, C.B., and Sass, S.L. (1981) Electron diffraction and microscopy techniques for studying grain-boundary structure. J. Amer. Ceram. Soc. 64, 335–345.

    Google Scholar 

  27. Chen, W.K., and Peterson, N.L. (1972) Correlation effects and effects of cobalt additions on cobalt and nickel diffusion in NiO. J. Phys. Chem. Solids 33, 881–892.

    Google Scholar 

  28. Chen, W.K., and Peterson, N.L. (1980) Grain-boundary diffusion of 60Co and 51Cr in NiO. J. Amer. Ceram. Soc. 63, 566–570.

    Google Scholar 

  29. Chen, W.K., Peterson, N.L., and Robinson, L.C. (1973) Chromium tracer diffusion in NiO crystals. J. Phys. Chem. Solids 34, 705–709.

    Google Scholar 

  30. Chokshi, A.H. (1988) Critical appraisal of diffusivity determinations from experimental creep data. J. Amer. Ceram. Soc. 71, C241–C243.

    Google Scholar 

  31. Christensen, J.N., Rosenfeld, J.L., and DePaolo, D.J. (1989) Rates of tectonometa- morphic processes from rubidium and strontium isotopes in garnet. Science 244, 1465–1469.

    Google Scholar 

  32. Coble, R.L. (1963) Model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682.

    Google Scholar 

  33. Condit, R.H. (1974) Diffusion path networks in the wurtzite lattice, in Defects and Transport in Oxides, edited by M.S. Selzer and R.I. Jaffee, pp. 303–313. Plenum Press, New York.

    Google Scholar 

  34. Condit, R.H. (1985) An approach to analyzing diffusion in olivine, in Point Defects in Minerals, edited by R.N. Schrock, pp. 106–115. Amer. Geophys. Union, Geo-physical Mon. 31.

    Google Scholar 

  35. Condit, R.H., Weed, H.C., and Piwinskii, A.J. (1985) A technique for observing oxygen diffusion along grain boundary regions in synthetic forsterite, in Point Defects in Minerals, edited by R.N. Schrock, pp. 97–105. Amer. Geophys. Union, Geophysical Mon. 31.

    Google Scholar 

  36. Crank, J. (1975) The Mathematics of Diffusion ( 2nd ed. ). Oxford University Press, Oxford, UK, 414 pp.

    Google Scholar 

  37. Daniels, A.U. Jr., Lowrie, R.C. Jr., Gibby, R.L., and Cutler, I.B. (1962) Observations on normal grain growth in magnesia and calcia. J. Amer. Ceram. Soc. 45, 282–285.

    Google Scholar 

  38. Dhaline, G., Dechamps, M., and Revcolevschi, A. (1983) Energy of tilt boundaries and mass transport mechanisms in nickel oxide, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer. Adv. Ceram., vol. 6, pp. 139–150. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  39. Dhaline, G., Dechamps, M., and Revcolevschi, A. (1982) Relative energies of <011> tilt boundaries in NiO. J. Amer. Ceram. Soc 65, 611–612.

    Google Scholar 

  40. Dennis, P.F. (1984a) Oxygen self-diffusion in quartz under hydrothermal conditions.J. Geophys. Res. 89, 4047–4057.

    Google Scholar 

  41. Dennis, P.F. (1984b) Oxygen self diffusion in quartz. Progress in Experimental Petrology. 6th Rpt., Nat. Env. Res. Council, Pub. Ser. D, N. 25, pp. 260–265.

    Google Scholar 

  42. Dubois, D., Monty, C., and Philibert, J. (1982) Oxygen self-diffusion in NiO single crystals. Philos. Mag. A 46, 419–433.

    Google Scholar 

  43. Duffy, D.M., and Tasker, P.W. (1983) Computer simulation of <011> tilt grain boundaries in nickel oxide. Philos. Mag. A 48, 155–162.

    Google Scholar 

  44. Duffy, D.M., and Tasker, P.W. (1985) The calculated properties of grain boundaries in nickel oxide. J. de Phys. 46, C4, 185–194.

    Google Scholar 

  45. Duffy, D.M., and Tasker, P.W. (1986) Theoretical studies of diffusion processes down coincident tilt boundaries in NiO. Philos. Mag. A 54, 759–771.

    Google Scholar 

  46. Elphick, S.C., Dennis, P.F., and Graham, C.M. (1986) An experimental study of the diffusion of oxygen in quartz and albite using an overgrowth technique. Contrib. Mineral. Petrol. 92, 322–330.

    Google Scholar 

  47. Fisher, J.C. (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J. Appl. Phys. 22, 74–77.

    Google Scholar 

  48. Florjancic, M., Mader, W., Ruehle, M., and Turwitt, M. (1985) HREM and diffraction studies if an Al203/Nb interface. J. de Phys. 46, C4-129–C4-140.

    Google Scholar 

  49. Freer, R. (1980) Self-diffusion and impurity diffusion in oxides (Bibliography). J. Mater. Sci. 15, 803–824.

    Google Scholar 

  50. Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral Petrol. 76, 440–454.

    Google Scholar 

  51. Giletti, B.J., and Yund, R.A. (1984) Oxygen diffusion in quartz. J. Geophys. Res. 89, 4039–4046.

    Google Scholar 

  52. Giletti, B.J., Yund, R.A., and Semet, M. (1976) Silicon diffusion in quartz (Abs.). Geol Soc. Amer. Abs. Prog. 8, 883–884.

    Google Scholar 

  53. Giletti, B.B., Hickey, J.H., and Tullis, T.E. (1979) Oxygen diffusion in olivine under hydrous conditions (Abs.). EOS Amer. Geophys. Union Trans. 60, 370.

    Google Scholar 

  54. Gjostein, N.A., and Rhines, F.N. (1959) Absolute interfacial energies of [001] tilt and twist boundaries in copper. Acta Metallogr. 7, 319–330.

    Google Scholar 

  55. Gordon, R.S. (1973) Mass transport in the diffusional creep of ionic solids. J. Amer. Ceram. Soc. 56, 147–152.

    Google Scholar 

  56. Gordon, R.S. (1975) Ambipolar diffusion and its application to diffusion creep, in Mass Transport Phenomena in Ceramics, edited by A.R. Cooper and A.H. Heuer, Materials Science Research, vol. 7, pp. 445–464. Plenum Press, New York.

    Google Scholar 

  57. Gordon, R.S. (1985) Diffusional creep in polycrystalline solids, in Point Defects in Minerals, edited by R.N. Schrock, pp. 132–140. Amer. Geophys. Union, Geo-physical Mon. 31.

    Google Scholar 

  58. Gronsky, R. (1979) Direct imaging of grain boundaries, in Grain-Boundary Structure and Kinetics, edited by R.W. Balluffi, pp. 45–70. American Society of Metals, Metals Park, Ohio.

    Google Scholar 

  59. Gupta, D., Campbell, D.R., and Ho, P.S. (1978) Grain boundary diffusion, in Thin Films—Interdiffusion and Reactions, edited by J.M. Poate, K.N. Tu, and J.W. Mayer, pp. 161–242. Wiley-Interscience, New York.

    Google Scholar 

  60. Hagege, S., Carter, C.B., Cosandev, F., and Sass, S.L. (1982) The variation of grain boundary structural width with misorientation angle and boundary plane. Philos. Mag. A 45, 723–740.

    Google Scholar 

  61. Hall, E.L. (1982) Application of the analytical electron microscope to the study of grain-boundary chemistry. J. de Phys. 43, C6, 239–254.

    Google Scholar 

  62. Hallwig, D., Schactner, R., and Sockel, H.G. (1982) Diffusion of magnesium, silicon and oxygen in Mg2Si04 and formation of the compound in the solid state, in Reactivity of Solids, edited by K. Dryek, J. Habor and J. Nowotry, pp. 166–169. Proc. 9th Int. Symposium.

    Google Scholar 

  63. Harding, B.C., and Price, D.M. (1972) Cation self-diffusion in MgO up to 2350 °C. Philos. Mag. 26, 253–260.

    Google Scholar 

  64. Harrison, L.G. (1961) Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides. Trans. Faraday Soc. 57, 1191–1199.

    Google Scholar 

  65. Hart, E.W. (1957) On the role of dislocations in bulk diffusion. Acta Metall. 5, 597.

    Google Scholar 

  66. Hasson, G.C., and Goux, C. (1971) Interfacial energies of tilt boundaries in aluminum. Experimental and theoretical determination. Scripta Metall. 5, 889–894.

    Google Scholar 

  67. Haul, R., and Dumbgen, G. (1962) Investigation of oxygen diffusion in Ti02, quartz and quartz glass by isotope exchange. Z. Electrochem. 66, 636–641.

    Google Scholar 

  68. Hay, R.S., and Evans, R. (1988) Intergranular distribution of pore fluid and the nature of high-angle grain boundaries in limestone and marble. J. Geophys. Res. 93, 8959–8974.

    Google Scholar 

  69. Herring, C. (1950) Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437–445.

    Google Scholar 

  70. Hillert, M. (1965) On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238.

    Google Scholar 

  71. Hirota, K., and Komatsu, W. (1977) Concurrent measurement of volume, grain-boundary and surface diffusion coefficients in the system NiO-Al203. J. Amer. Ceram. Soc. 60,105–107.

    Google Scholar 

  72. Hobbs, B. E. (1984) Point defect chemistry of minerals under a hydrothermal environment. J. Geophys. Res. 89, 4026–4038.

    Google Scholar 

  73. Hobbs, B. E. (1985) The hydrolytic weakening effect in quartz, in Point Defects in Minerals, edited by R.N. Schrock, pp. 151–170. Amer. Geophys. Union, Geophysical Mon. 31.

    Google Scholar 

  74. Holt, J.B. (1964) Self-diffusion of oxygen in single-crystal beryllium oxide. J. Nucl.Mater. 11, 107–110.

    Google Scholar 

  75. Hoshino, K., and Peterson, N.L. (1983) Cation self-diffusion in Cr203. J. Amer.Ceram. Soc. 66, C202–C203.

    Google Scholar 

  76. Ichinose, H., and Ishida, Y. (1985) High resolution electron microscopy of grain boundaries in fee and bcc metals. J. de Phys. 46, C4-39–C4-49.

    Google Scholar 

  77. Ikegami, T., Matsuda, S.-I., Moriyoshi, Y., and Suzuki, H. (1982) Normal grain growth in porous and dense compacts. J. Mater. Sci. 17, 2855–2860.

    Google Scholar 

  78. Jaoul, O., Froidevaux, D., Durham, W.B., and Michaut, M. (1980) Oxygen self- diffusion in forsterite: Implications for the high temperature creep mechanism. Earth Planet. Sci. Lett. 47, 613–624.

    Google Scholar 

  79. Jaoul, O., Houlier, B., and Abel, F. (1983) Study of lsO diffusion in magnesium orthosilicate by nuclear microanalysis. J. Geophys. Res. 88, 613–624.

    Google Scholar 

  80. Jaoul, O., Poumellec, M., Froidevaux, C., and Havette, A. (1981) Silicon diffusion in forsterite: A new constraint for understanding mantle deformation, in Anelasticity in the Earth, edited by F.D. Stacey, M.S. Paterson, and A. Nicholas, pp. 95–100. Amer. Geophys. Union, Geodynamics Ser. 4.

    Google Scholar 

  81. Joesten, R. (1983) Grain growth and grain boundary diffusion in quartz from the Christmas Mountains (Texas) contact aureole. Amer. J. Sci. 283A (Orville Volume) 233–254.

    Google Scholar 

  82. Joesten, R. (1985) A diffusion-compensation relation for normal grain growth and grain-boundary diffusion of oxygen in oxides. J. Amer. Ceram. Soc. 68, C62–C64.

    Google Scholar 

  83. Joesten, R., and Fisher, G.W. (1988) Kinetics of diffusion-controlled mineral growth in the Christmas Mountains (Texas) contact aureole. Geol. Soc. Amer. Bull. 100, 714–732.

    Google Scholar 

  84. Johnson, D.L., and Berrin, L. (1967) Grain boundary diffusion in the sintering of oxides, in Sintering and Related Phenomena, Materials Science Research, vol. 6, edited by G.C. Kuczynski, N.A. Hooten, and N.F. Gibbon, pp. 445–566. Gordon and Breach, New York.

    Google Scholar 

  85. Kapadia, C.M., and Liepold, M.H. (1974) Grain growth in pure dense MgO. J. Amer. Ceram. Soc. 57, 41–42.

    Google Scholar 

  86. Karstensen, F. (1959) Uber die Diffusion in Germaniumkristallen, die eine Korngranze enthalten. Z. Naturforschung 14A, 1031–1039.

    Google Scholar 

  87. Kingery, W.D. (1974a) Plausible concepts necessary and sufficient for interpretation of ceramic grain boundary phenomena: I. Grain-boundary characteristics, struc¬ture and electrostatic potential. J. Amer. Ceram. Soc. 57, 1–8.

    Google Scholar 

  88. Kingery, W.D. (1974b) Plausible concepts necessary and sufficient for interpretation of ceramic grain boundary phenomena: II. Solute segregation, grain-boundary diffusion and general discussion. J. Amer. Ceram. Soc. 57, 74–83.

    Google Scholar 

  89. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R. (1976) Introduction to Ceramics ( 2nd ed. ). Wiley, New York, 1032 pp.

    Google Scholar 

  90. Kronenberg, A.K., Kirby, S.H., Aines, R.D., and Rossman, G.R. (1986) Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening. J. Geophys. Res. 91, 12713–12744.

    Google Scholar 

  91. Kronenberg, A.K., and Tullis, J. (1984) Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening. J. Geophys. Res. 89,4281– 4297.

    Google Scholar 

  92. Lartigue, S., and Priester, L. (1985) Grain boundaries in polycrystalline alumina. J.de Phys. 46, C4, 101–106.

    Google Scholar 

  93. Lavine, J.P., and Losee, D.L. (1984) Monte Carlo treatment of impurity diffusion in polycrystalline films. J. Appl. Phys. 56, 924–926.

    Google Scholar 

  94. Le Claire, A.D. (1951) Grain boundary diffusion in metals. Philos. Mag. 42, 468–474.

    Google Scholar 

  95. Le Claire, A.D. (1963) The analysis of grain boundary diffusion measurements. Brit.J. Appl. Phys. 14, 351–356.

    Google Scholar 

  96. Le Claire, A.D. (1986) Diffusion in dislocations—“pipe diffusion”, in Solute-Defect Interaction, Theory and Experiment, edited by S. Saimoto, G.R. Purdy, and G.V. Kidson, pp. 251–270. Pergamon Press, Toronto.

    Google Scholar 

  97. Le Claire, A.D., and Rabinovitch, A. (1984) Mathematical analysis of diffusion in dislocations, in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick S., pp. 257–318. Academic Press, Orlando.

    Google Scholar 

  98. Lessing, P.A., and Gordon, R.S. (1977) Creep of polycrystalline alumina, pure and doped with transition metal impurities. J. Mater. Sci. 12, 2291–2302.

    Google Scholar 

  99. Levine, H.S., and MacCallum, C.J. (1960) Grain boundary and lattice diffusion in polycrystalline bodies. J. Appl. Phys. 31, 595–599.

    Google Scholar 

  100. Lindner, R. (1956) Silikatbildung durch Reaktion im Festen Zustand. Zeitssch. Phys.Che. NF 6, 129–142.

    Google Scholar 

  101. Lindner, R. (1957) Studies on solid state reactions with radiotracers. J. Chem. Phys. 23, 410–411.

    Google Scholar 

  102. Martin, G., and Perraillon, B. (1979) Measurements of grain boundary diffusion, in Grain-Boundary Structure and Kinetics, edited by R.W. Balluffi, pp. 239–296. American Society of Metals, Metals Park, Ohio.

    Google Scholar 

  103. McKenzie, D.R., Searcy, A.W., Holt, J.B., and Condit, R.H. (1971) Oxygen grain-boundary diffusion in MgO. J. Amer. Ceram. Soc. 54, 188–190.

    Google Scholar 

  104. McLaren, A.C. (1986) Some speculation on the nature of high-angle grain boundaries in quartz rocks, in Mineral and Rock Deformation: Laboratory Studies. The Paterson Volume, edited by B.E. Hobbs and H.C. Heard, pp. 233–245. Amer. Geophys. Union, Geophysical Mon. 36.

    Google Scholar 

  105. Merkle, K.L., Reddy, J.F., and Wiley, C.L. (1985) Grain boundary structure in NiO. J. de Phys. 46, C4, 95–100.

    Google Scholar 

  106. Mistier, R.E., and Coble, R.L. (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. J. Appl. Phys. 45, 1507–1509.

    Google Scholar 

  107. Moosa, A.A., and Rothman, S.J. (1985) Effect of yttrium additions on the oxidation of nickel. Oxidation of Metals 24, 133–148.

    Google Scholar 

  108. Morioka, M. (1981) Cation diffusion in olivine—II. Ni-Mg, Mn-Mg, Mg and Ca. Geochim. Cosmochim. Acta 45, 1573–1580.

    Google Scholar 

  109. Morrissey, K.J., and Carter, C.B. (1983) Dislocations in twin boundaries in A12O3, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer. Adv. Ceram. vol. 6, pp. 85–95. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  110. Murch, G.E., and Rothman, S.J. (1985) Grain boundary diffusion at high densities of grain boundaries. Diffusion and Defect Data 42, 17–28.

    Google Scholar 

  111. Mykura, H., Bansal, P.S., and Lewis, M.H. (1980) Coincidence site lattice relations of MgO-CdO interfaces. Philos. Mag. 42, 225–233.

    Google Scholar 

  112. Nagy, K.L., and Giletti, B.J. (1986) Grain boundary diffusion of oxygen in a macro-perthitic feldspar. Geochim. Cosmochim. Acta 50, 1151–1158.

    Google Scholar 

  113. Oishi, Y., Ando, K., Kurokawa, H., and Hiro, Y. (1983) Oxygen self-diffusion in MgO single crystals. J. Amer. Ceram. Soc. 66, C60–C62.

    Google Scholar 

  114. Oishi, Y., Ando, K., Suga, N., and Kingery, W.D. (1983) Effect of surface condition on oxygen self-diffusion coefficients for single crystal A1203. J. Amer. Ceram. Soc. 66, C130–C131.

    Google Scholar 

  115. Osenbach, J.W., and Stubican, V. (1983) Grain-boundary diffusion of 51Cr in MgO and Cr-doped MgO. J. Amer. Ceram. Soc. 66, 191–195.

    Google Scholar 

  116. Ostyn, K.M., and Carter, C.B. (1983) Structure of interfaces in cubic oxides, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer. Adv. Ceram. vol. 6, pp. 44–58. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  117. Paladino, A.E., and Kingery, W.D. (1962) Aluminum ion diffusion in aluminum oxide. J. Chem. Phys. 37, 957–962.

    Google Scholar 

  118. Passmore, E.M., Duff, R.H., and Vasilos, T. (1966) Creep of dense, polycrystalline magnesium oxide. J. Amer. Ceram. Soc. 49, 594–600.

    Google Scholar 

  119. Paterson, M.S. (1986) The thermodynamics of water in quartz. Phys. Chem. Mineral. 13, 245–255.

    Google Scholar 

  120. Perrow, J.M., Smeltzer, W.W., and Embury, J.D. (1968) The role of structural defects in the growth of nickel oxide films. Acta Metall. 16, 1209–1218.

    Google Scholar 

  121. Peterson, N.L. (1979) Grain-boundary diffusion—Structural effects, models, and mechanisms, in Grain-Boundary Structure and Kinetics, edited by R.W. Balluffi, pp. 209–236. American Society of Metals, Metals Park, Ohio.

    Google Scholar 

  122. Peterson, N.L. (1983) Diffusion mechanisms in grain boundaries in solids, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer. Adv. Ceram. vol. 6, pp. 236–256. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  123. Poirier, J.-P. (1985) Creep of Crystals. Cambridge University Press, Cambridge, 280 PP-

    Google Scholar 

  124. Porter, D.A., and Easterling, K.E. (1981) Phase Transformations in Metals and Alloys, Van Nostrand Reinhold (UK), Wokingham, Berks., UK, 446 pp.

    Google Scholar 

  125. Raj, R., and Ashby, M.F. (1971) On grain boundary sliding and diffusional creep. Trans. Met. Soc. A.I.M.E. 2, 1113–1127.

    Google Scholar 

  126. Reddy, K.P.R., and Cooper, A.R. (1982) Oxygen self-diffusion in sapphire. J. Amer.Ceram. Soc. 65, 634–638.

    Google Scholar 

  127. Reddy, K.P.R., and Cooper, A.R. (1983) Oxygen diffusion in MgO and alpha-Fe2O3. J. Amer. Ceram. Soc. 66, 664–666.

    Google Scholar 

  128. Reddy, K.P.R., Oh, S.M., Major, L.D., Jr., and Cooper, A.R. (1980) Oxygen diffusion in forsterite. J. Geophys. Res. 85, 322–326.

    Google Scholar 

  129. Reed, D.J., and Wuensch, B.J. (1980) Ion-probe measurement of oxygen self-diffusion in single crystal A1203. J. Amer. Ceram. Soc. 63, 88–92.

    Google Scholar 

  130. Ricoult, D.L., and Kohlstedt, D.L. (1983a). Structural width of low-angle grain boundaries in olivine. Phys. Chem. Mineral. 9, 133–138.

    Google Scholar 

  131. Ricoult, D.L., and Kohlstedt, D.L. (1983b) Low-angle grain boundaries in olivine, in Character of Grain Boundaries, edited by M.F. Yan and A.H. Heuer, Adv. Ceram. vol. 6, pp. 59–72. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  132. Ruehle, M. (1982) Transmission electron microscopy studies of grain boundaries in ceramics. J. de Phys. 43, C6-115–C6-133.

    Google Scholar 

  133. Ruehle, M. (1984) TEM observations of grain boundaries in ceramics, in Electron Microscopy of Materials, edited by W. Krakow, D.A. Smith, and L.W. Hobbs, pp. 317–323. Mat. Res. Soc. Symp. Proc. 31. North-Holland, New York.

    Google Scholar 

  134. Ruehle M. (1985) Comparisons between observed and computed grain boundary structures and energies in ceramics. J. de Phys. 46, C4, 281–291.

    Google Scholar 

  135. Ruehle, M., and Sass, S.L. (1984) The detection of the change in mean inner potential at dislocations in grain boundaries in NiO. Philos. Mag. A 49, 759–782.

    Google Scholar 

  136. Ruoff, A.L., and Balluffi, R.W. (1963) Strain-enhanced diffusion in metals. II. Dislocation and grain-boundary short circuiting models. J. Appl. Phys. 34,1848– 1853.

    Google Scholar 

  137. Schactner, R., and Sockel, H.G. (1977) Study of diffusion in quartz by activation analysis, in Reactivity of Solids, edited by J. Wood, O. Lindquist, C. Helgeson, and N.G. Vannerburg, pp. 605–609. Proc. 8th Int. Symposium.

    Google Scholar 

  138. Shewmon, P.G. (1963) Diffusion in Solids, McGraw-Hill, New York, 203 pp.

    Google Scholar 

  139. Smeltzer, W.W., Haering, R.R., and Kirkaldy, J.S. (1961) Oxidation of metals by short circuit and lattice diffusion of oxygen. Acta. Metall. 9, 880–885.

    Google Scholar 

  140. Smith, C.S., and Guttman, L. (1953) Measurement of internal boundaries in three- dimensional structures by random sectioning. Amer. Inst. Min. Metallogr. Engineers Trans. 197, 81–87.

    Google Scholar 

  141. Spriggs, R.M., Brissette, L.A., and Vasilos, T. (1964) Grain growth in fully dense magnesia. J. Amer. Ceram. Soc. 47, 417–418.

    Google Scholar 

  142. Stocker, R.L., and Ashby, M.F. (1973) On the rheology of the upper mantle. Rev. Geophys. 11, 391–426.

    Google Scholar 

  143. Stubican, V.S., Huzinec, G., and Damjanovic, D. (1985) Diffusion of 51Cr in surface layers of magnesia, alumina and spinel. J. Amer. Ceram. Soc. 68, 181–184.

    Google Scholar 

  144. Stubican, V.S., and Osenbach, J.W. (1984) Influence of anisotropy and do** on grain-boundary diffusion in oxide systems. Solid State Ionics 12, 375–381.

    Google Scholar 

  145. Sun, C.P., and Balluffi, R.W. (1982) Secondary grain boundary dislocations in [001] twist boundaries in MgO, I. Intrinsic structures. Philos. Mag. A 46, 49–62.

    Google Scholar 

  146. Suzuoka, T. (1961) Lattice and grain boundary diffusion in polycrystals. Trans. Japan Inst. Met. 2, 25–33.

    Google Scholar 

  147. Tullis, J., and Yund, R.A. (1982) Grain growth kinetics of quartz and calcite aggregates. J. Geol. 90, 301–318.

    Google Scholar 

  148. Turnbull, D. (1951) Theory of grain boundary migration rates. Trans. A.I.M.E. 191, 661–665.

    Google Scholar 

  149. Underwood, E. E. (1972) The mathematical foundations of quantative stereology, in Stereology and Quantitative Metallography, edited by G. E. Pellissier and S.M. Purdy, pp. 3–37. ASTM STP 504, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  150. Underwood, E.E., Colcord, A.R., and Waugh, R.C. (1968) Quantative relation-ships for random microstructures, in Ceramic Microstructures, edited by R.M. Fulrath and J.A. Pask, pp. 25–52. Wiley, New York.

    Google Scholar 

  151. Vaudin, M.D., Ruehle, M., and Sass, S.L. (1983) Faceting of tilt boundaries in NiO.Acta Metall 31, 1109–1116.

    Google Scholar 

  152. Veblen, D.R. (1980) Anthophyllite asbestos: Microstructures, intergrown sheet silicates, and mechanisms of fiber formation. Amer. Mineral. 65, 1075–1086.

    Google Scholar 

  153. Veblen, D.R., and Buseck, P.R. (1981) Hydrous pyriboles and sheet silicates in pyroxenes and uralites: Intergrowth microstructures and reaction mechanisms. Amer. Mineral. 66, 1107–1134.

    Google Scholar 

  154. Verhoeven, J.D. (1975) Fundamentals of Physical Metallurgy. Wiley, New York. 567 pp.

    Google Scholar 

  155. Wang, H.A., and Kroeger, F.A. (1980) Chemical diffusion in polycrystalline A12O3. J. Amer. Ceram. Soc. 63, 613–619.

    Google Scholar 

  156. Whipple, R.T.P. (1954) Concentration contours in grain boundary diffusion. Philos. Mag. 45 (371), 1225–1236.

    Google Scholar 

  157. Weber, G.W., Bitler, W.R, and Stubican, V.S. (1977) Diffusion of 51Cr in MgO. J.Amer. Ceram. Soc. 60, 61–65.

    Google Scholar 

  158. Wuensch, B.J., and Yasilos, T. (1964) Grain boundary diffusion in MgO. J. Amer. Ceram. Soc. 47, 63–68.

    Google Scholar 

  159. Wuensch, B.J., and Vasilos, T. (1966) Origin of grain-boundary diffusion in MgO. J. Amer. Ceram. Soc. 49, 433–436.

    Google Scholar 

  160. Wuensch, B.J., and Vasilos, T. (1971) Diffusion of Ni2+ in high-purity MgO at high temperatures. J. Chem. Phys. 54, 1123–1129.

    Google Scholar 

  161. Wuensch, B.J., Steele, W.C., and Vasilos, T. (1973) Cation self-diffusion in single crystal MgO. J. Chem. Phys. 58, 5258–5266.

    Google Scholar 

  162. Yan, M.F., and Heuer, A.H. (editors) (1983) Character of Grain Boundaries, Adv.Ceram. vol. 6, 339 pp. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  163. Young, G., and Funderlich, R.E. (1973) On the grain-boundary diffusion theory of Fisher and Whipple. J. Appl. Phys. 44, 5151–5154.

    Google Scholar 

  164. Yund, R.A. (1983) Diffusion in feldspars, in Feldspar Mineralogy (2nd ed), Reviews in Mineralogy, vol. 2, edited by P.H. Ribbe, pp. 203–222, Mineralogical Society of America, Washington, D.C.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Joesten, R. (1991). Grain-Boundary Diffusion Kinetics in Silicate and Oxide Minerals. In: Ganguly, J. (eds) Diffusion, Atomic Ordering, and Mass Transport. Advances in Physical Geochemistry, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9019-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9019-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9021-3

  • Online ISBN: 978-1-4613-9019-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation