Functional Evolution of Lateral Line and Inner Ear Sensory Systems

  • Conference paper
The Mechanosensory Lateral Line
  • 520 Accesses

Abstract

In detecting moving objects, the fish’s lateral line and inner ear support different, but closely related, hydrodynamic functions, suggesting early developments in the vertebrate sense of hearing. In an effort to elucidate the functional evolution of the two sensory systems, this chapter examines the hydrodynamic and acoustic fields in nature, the physics and physiology of the detection process, the evaluation of the sensory data, and the ensuing behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  • Bergeijk WA van (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Bergeijk WA van, Alexander S (1962) Lateral line canal organs on the head of Fundulus heteroclitus J. Morphol 110: 333–346.

    Article  Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–59.

    Google Scholar 

  • Buwalda RJA (1981) Segregation of directional and nondirectional acoustic information in the cod. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 139–171.

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.

    Google Scholar 

  • Dale T (1980) Surface morphology of the acoustico-lateralis sensory organs in teleosts: Functional and evolutionary aspects. In: Ali MA (ed) Environmental Physiology of Fishes. New York: Plenum Press, pp. 387–401.

    Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond 218: 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic animals. New York: Springer-Verlag, pp. 595–617.

    Google Scholar 

  • Dijkgraaf S (1960) Hearing in bony fishes. Proc R Soc Lond 152: 51–54.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1963) The functioning and the significance of the lateral-line organs. Biol Rev 38: 51–105.

    Article  PubMed  CAS  Google Scholar 

  • Enger PS (1966) Acoustic threshold in goldfish and its relation to the sound source distance. Comp Biochem Physiol 18: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Flock A (1965) The ultrastructure of the lateral line canal organ. Acta Otolaryngol. (Suppl.) 199: 7–90.

    Google Scholar 

  • Flock A (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Handbook of Sensory Physiology, Vol. I. New York: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flock A, Flock B, Murray E (1977) Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol 83: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Frisch K von (1938) The sense of hearing in fish. Nature 141: 8–11.

    Article  Google Scholar 

  • Gray JAB (1984) Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc R Soc Lond 220: 299–325.

    Article  Google Scholar 

  • Harris GG (1964) Considerations on the physics of sound production by fishes. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford; U.K.; Pergamon Press, pp. 233–247.

    Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841.

    Article  Google Scholar 

  • Hawkins AD (1986) Underwater sound and fish behavior. In: Pitcher TJ (ed) The Behavior of Teleost Fishes. London: Croom Helm, pp. 114–151.

    Google Scholar 

  • Hawkins AD, Johnstone ADF (1978) The hearing of the Atlantic salmon, Salmo salar J Fish Biol 13: 655–673.

    Article  Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2: 1–10.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of the vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74: 2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Jielof R, Spoor A, de Vries H (1952) The microphonic activity of the lateral line. J Physiol 116: 137–157.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1988a) Hydrodynamic and caustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1988b) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J. Exp Biol 133: 249–262.

    Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch 375: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn PH (ed) Lateral Line Detectors. Bloomington: Indiana University Press, pp. 105–121.

    Google Scholar 

  • Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge U.K.; Cambridge University Press, pp. 587–610.

    Google Scholar 

  • Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antarctic fish to movements of planktonic prey. Science 235: 195–196.

    Article  PubMed  CAS  Google Scholar 

  • Morse PM, Ingard KU (1968) Theoretical Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Muenz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L.J Comp Physiol 157: 555–568.

    Article  Google Scholar 

  • Myrberg AA (1978) Underwater sound-its effect on the behavior of sharks. In: Hodgson ES, Mathewson RF (eds) Sensory Biology of Sharks, Skates, and Rays. Washington: U.S. Government Printing Office, pp. 391–417.

    Google Scholar 

  • Netten SM van, Kroese ABA (1987) Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hear Res 29: 55–61.

    Article  PubMed  Google Scholar 

  • Olson K (1976) Evidence for localization of sound by fish in schools. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 257–270.

    Google Scholar 

  • Platt C (1988) Equilibrium in the vertebrates: Signals, senses, and steering underwater. In Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 783–809.

    Google Scholar 

  • Pumphrey RJ (1950) Hearing. Symp Soc Exp Biol 4: 3–18.

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–480.

    Google Scholar 

  • Sand O (1984) Lateral-line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge, U.K.; Cambridge University Press, pp. 3–32.

    Google Scholar 

  • Wenz JM (1964) Curious noises and the sonic environment in the ocean. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.; Pergamon Press, pp. 101–119.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kalmijn, A.J. (1989). Functional Evolution of Lateral Line and Inner Ear Sensory Systems. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation