Less Common Nonferrous Metals

  • Chapter
Materials Handbook

Abstract

The alkali metals are represented by the six chemical elements of the group IA(1) of Mendeleev’s periodic chart. These six elements are, in increasing atomic number: lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). The name alkali metals is given owing to the fact they form strong alkaline hydroxides (MOH, with M = Li, Na, K, etc.) when they combine with water (i.e., strong bases capable of neutralizing acids). The only members of the alkali metal family that are relatively abundant in the Earth’s crust are sodium and potassium. Amongst the alkali metals only lithium, sodium, and to a lesser extent potassium are widely used in industrial applications. Hence, only these three metals will be reviewed in detail in this section. Nevertheless, a short description of the main properties and industrial uses of the last three alkali metals (i.e., Rb, Cs, and Fr) will be presented at the end of the section. Some physical, mechanical, thermal, electrical, and optical properties of the five chief alkali metals (except francium which is radioactive with a short half-life) are listed in Table 3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grady HR (1980) Lithium metal for the battery industry. J Power Sources 5: 127 - 135.

    CAS  Google Scholar 

  2. Saito E, Dirian G (1962) Process for the isotopic enrichment of lithium by chemical exchange. British Patent 902,755 9 Aug.

    Google Scholar 

  3. Ruedl, E, Coen V, Sasaki, T, Kolbe H (1982) Intergranular lithium penetration of low Ni-Cr-Mn austenitic stainless steels. J Nuclear Mater 110: 28 - 36.

    CAS  Google Scholar 

  4. Hoffmann EE, Mandly WD (1957) Corrosion resistance of the metal and alloys to sodium and lithium. US Atomic Energy Comm., ORNL-2271, Oak Ridge National Laboratory, 11 pp.

    Google Scholar 

  5. Beskorovainyi NM, Ivanov VK (1967) Mechanism underlying the corrosion of carbon steels in lithium. In: Emelíyanov dS, Evstyukin AI (eds) High purity metals and alloys. Consultants Bureau, pp 120 - 129.

    Google Scholar 

  6. Klueh RL (1974) Oxygen effects on the corrosion of niobium and tantalum by liquid lithium. Met Trans 5: 875 - 879.

    CAS  Google Scholar 

  7. Klueh RL (1973) Effect of oxygen on the corrosion of niobium and tantalum by liquid lithium. US Atomic Energy Comm. Report ORNL-TM-4069, Oak Ridge National Laboratory.

    Google Scholar 

  8. Smith DL, Natesan K (1974) Influence of nonmetallic impurity elements on the compatibility of liquid lithium with potential containment materials. Nucl Technol 22: 392 - 404.

    CAS  Google Scholar 

  9. Singh RN (1976) Compatibility of ceramics with liquid Na and Li. J Am Ceram Soc 59: 112 - 115.

    CAS  Google Scholar 

  10. Weeks ME (1956) Discovery of the elements, 6th edn. J Chem Ed, ACS, Easton, PA, pp 484 - 490.

    Google Scholar 

  11. Hajek J (1949) French Patent, 8 Oct.

    Google Scholar 

  12. Herbert D, Ulam J (949) French Patent, 26 Nov.

    Google Scholar 

  13. Haicang L, Wei Z (1995) Research, manufacture and applications of lithium metal materials in China. Rare Metals 14: 313 - 316.

    Google Scholar 

  14. Averill WA, Olson D (1978) A review of extractive processes for lithium from ores and brines. Energy 3: 305 - 313.

    CAS  Google Scholar 

  15. Warren (1896) Chem News 74: 6.

    Google Scholar 

  16. Hanson (1936) US Pat. 2, 028, 390.

    Google Scholar 

  17. Gunz (1893) Compt Rend Acad Sci 117: 732.

    Google Scholar 

  18. Ruff, Johannsen (1906) Z Electrochem 12: 186.

    CAS  Google Scholar 

  19. Muller J, Bauer R, Sermond B, Dolling E (Metallgesellschaft Aktiengesellschaft) (1988) Process and apparatus for producing high-purity lithium metal by fused-salt electrolysis. US Patent 4,740,279, 26 April.

    Google Scholar 

  20. Weeks ME, Leicester HM (1968). Discovery of the elements, 7th edn. Published by the Journal of Chemical Education, Easton, Pennsylvania.

    Google Scholar 

  21. Schwartz, US Pat. 3, 170, 812 (1970).

    Google Scholar 

  22. Cardarelli F (1999) Scientific unit conversion: a practical guide to metrication, 2nd edn. Springer-Verlag, London.

    Google Scholar 

  23. McIntyre DR, Dillon CP (1986) Pyrophoric behavior and combustion of reactive metals. MTI Publications/NACE.

    Google Scholar 

  24. Kroll WJ (1940) Trans Electrochem Soc 78: 35.

    Google Scholar 

  25. Hunter MA (1910) J Am Chem Soc 32: 330.

    CAS  Google Scholar 

  26. Standard specification for titanium and titanium alloy strip, sheet, and plate. ASTM B265-99; 8 pages.

    Google Scholar 

  27. Klaproth MH (1789) Ann Chim Phys 6: 1.

    Google Scholar 

  28. Vauquelin NL (1797) Ann Chim Phys 22: 179.

    Google Scholar 

  29. Berzelius JJ (1824) Ann Chim Phys 26: 43.

    Google Scholar 

  30. Van Arkel AE, DeBoer JH (1925) Z Anorg Chem 148: 345.

    Google Scholar 

  31. Yau TL, and Bird KW (1995) Manage corrosion with zirconium. Chem Eng Prog 91: 42 - 46.

    CAS  Google Scholar 

  32. Marden JW and Rich MN (1927) Vanadium. Ind Eng Chem 19: 786 - 788.

    CAS  Google Scholar 

  33. McKechnie RK and Seybolt AU (1950) Preparation of ductile vanadium by calcium reduction. J Electrochem Soc 97: 311 - 315.

    CAS  Google Scholar 

  34. Boehni H (1967) Corrosion behavior of various rare metals in aqueous acid solutions with special consideration of niobium and tantalum. Schweiz Arch Angew Wiss Tech 33: 339 - 363.

    CAS  Google Scholar 

  35. Bishop CR and Stern M (1961) Hydrogen embrittlement of tantalum in aqueous media. Corrosion 17: 379t - 385t.

    CAS  Google Scholar 

  36. Von Bolton W (1905) Z Elektrochem 11: 45.

    Google Scholar 

  37. Boehni H (1967) Corrosion behavior of various rare metals in aqueous acid solutions with special consideration of niobium and tantalum. Schweiz Arch Angew Wiss Tech 33: 339 - 363.

    CAS  Google Scholar 

  38. Bishop CR, Stern M (1961) Hydrogen embrittlement of tantalum in aqueous media. Corrosion 17: 379t - 385t.

    CAS  Google Scholar 

  39. Von Bolton W (1905) Z Elektrochem 11: 45.

    Google Scholar 

  40. Driggs FH, Lilliendahl WC (1931) Preparation of metals powders by electrolysis of fused salts. III Tantalum. Ind Eng Chem 23: 634-637.

    Google Scholar 

  41. Norton Grinding Wheel Co. (1958) Electrolytic production of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, or W. Brit Pat 792, 716.

    Google Scholar 

  42. Ervin G Jr, Ueltz HFG (1958) Apparatus for continuous production of refractory metal by electrolysis of fused salts. US Pat 2,837, 478.

    Google Scholar 

  43. Ervin G Jr, Ueltz HFG (1960) Electrolytic preparation of Th, U, Nb, Ta, V, W, Mc, and Cr. Ger Pat 1,078, 776.

    Google Scholar 

  44. Ueltz HFG (1960) Electrolytic extraction of refractory metals of groups IV, V, and VI from their carbide. US Pat 2,910, 021.

    Google Scholar 

  45. Sarla RM, Schneidersmann EO (1960) Fused salt electrolytic cell for producing high-melting reactive metals, such as tantalum. US Pat 2,957, 816.

    Google Scholar 

  46. Union Carbide Corporation (1966) Cell for plating heat resistant metals from molten salt mixtures. Neth Appl 6,516, 263.

    Google Scholar 

  47. Horizon Titanium Corp. (1957) Electrodeposition of Ti, Zr, Hf, V, Ta, and Nb. Brit Pat 778, 218.

    Google Scholar 

  48. Horizon Titanium Corp. (1958) Formation of hard intermetalic coatings from electrodeposited layers of refractory metals. Brit Pat 788, 804.

    Google Scholar 

  49. Horizon Titanium Corp. (1958) Electrodeposition of Ti, Zr, Hf, Ta, V, Nb, Cr, Mo, and W. Brit Pat 788, 295.

    Google Scholar 

  50. Horizon Titanium Corp. (1958) Fused-salt bath for electrodeposition of multivalent metals: Ti, Nb, Ta, and V. Brit Pat 791, 151.

    Google Scholar 

  51. Merlub-Sobel M, Arnoff MJ, Sorkin JL [1959) Chlorination and electrolysis of metal oxides in fused salts baths. US Pat 2, 870, 073.

    Google Scholar 

  52. Wainer E (1959) Transition-metal halides for electrodeposition of transition metals. US Pat 2,894, 886.

    Google Scholar 

  53. Timax Corp. (1960) Electrolytic preparation of pure niobium and tantalum. Brit Pat 837, 722.

    Google Scholar 

  54. Hubert K, Fost E (1960) Preparation of niobium and tantalum by melt electrolysis. Ger Pat 1,092, 217.

    Google Scholar 

  55. Kern F (1961) Electrolytic production of niobium and tantalum. US Pat 2,981, 666.

    Google Scholar 

  56. Kern F (1962) Tantalum powders by electrolysis. Ger Pat 1,139, 284.

    Google Scholar 

  57. Scheller W, Blumer M (1962) Niobium and tantalum. Ger Pat 1,139, 982.

    Google Scholar 

  58. Pruvot E (1959) Electrolytic manufacture of tantalum. Fr Pat 1,199, 033.

    Google Scholar 

  59. Société Général du Vide (1964) Protective coating. Neth Appl 6,400, 547.

    Google Scholar 

  60. Nishio Y, Oka T, Ohmae T (1971) Steel plated with tantalum or a tantalum alloy. Ger Pat 2,010, 785.

    Google Scholar 

  61. Paschen P, Koeck W (1990) Fused salt electrolysis of tantalum. In: Refractory metals: Extraction, processing, and applications. The Minerals, Metals, and Minerals Society, TMS Publishing, Warrendale, Pennsylvania pp 221 - 230.

    Google Scholar 

  62. Mellors GW, Senderoff S (1964) Electrolytic deposit of refractory metals. Belg Pat 640, 801.

    Google Scholar 

  63. Danzig IF, Dempsey RM, La Conti AB (1971) Characteristic of tantalided and hafnided samples in highly corrosive electrolyte solutions. Corrosion 27: 55 - 62.

    CAS  Google Scholar 

  64. Christopher D (1961) Bimetallic pipe. Mech Eng 83: 68 - 71.

    CAS  Google Scholar 

  65. Whiting KA (1964) Cladding copper articles with niobium or tantalum and platinum outside. US Pat 3,156, 976.

    Google Scholar 

  66. Cardarelli F, Taxil P, Savall A (1996) Tantalum protective thin coating techniques for the chemical process industry: molten salts electrocoating as a new alternative. Int J Refract Metals Hard Mater 14: 365 - 881.

    CAS  Google Scholar 

  67. Grams WR (1968) Cladding the cleaned reactive refractory metals with lower-melting metals in the absence of a reactive atmosphere. US Pat 3,409, 978.

    Google Scholar 

  68. Krupin AV (1968) Rolling metal in vacuum. Mosk Inst Stali Splavov 52: 153 - 163.

    Google Scholar 

  69. Chelius J (1968) Explosion-clad sheet metal for corrosion-resistant chemical equipment. Weikst Korros 19: 307 - 312.

    CAS  Google Scholar 

  70. Bergmann OR, Cowan GR, Holtzman AH (1970) Metallic multilayered composites bonded by explosion detonation shock. US Pat 3,493, 353.

    Google Scholar 

  71. Glatz B (1970) Explosive cladding of metals. Huntn Listy 25: 398 - 406.

    Google Scholar 

  72. Bouckaert GP, Hix HB, Chelius J (1974) Explosive-bonded tantalum-steel vessels. DECHEMA Monograph 76: 9 - 22.

    CAS  Google Scholar 

  73. Umanshii YaS, Urazaliev US, Ivanov RD (1972) Formation of tantalum thin films prepared by cathodic sputtering. Fiz Metal Metalloved 33: 196 - 199.

    Google Scholar 

  74. Fitzer E, Kehr D (1973) Processing studies of the chemical vapor deposition of niobium and tantalum. Proc 4th Int Conf CVD, pp 144 - 146.

    Google Scholar 

  75. Spitz J, Chevallier J (1975) Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation. Proc 5th Int Conf CVD, pp 204 - 216.

    Google Scholar 

  76. Spitz J (1973) Proc 5th European congr corrosion, Paris.

    Google Scholar 

  77. Beguin C, Horrath E, Perry AJ (1977) Tantalum coating of mild steel by CVD. Thin Solid Films 46: 209 - 212.

    CAS  Google Scholar 

  78. Bobst J (1971) Niobium and tantalum electroplating. Ger Pat 2,064, 586.

    Google Scholar 

  79. Lantelme F, Inman D, Lovering DG (1984) Electrochemistry - I. In: Lovering DG, Gale RJ (eds.) Molten salt techniques, vol. 2. Plenum Press, New York, pp 138 - 220.

    Google Scholar 

  80. Sadoway DR (1990) The synthesis of refractory-metal compounds by electrochemical processing. In: Non aqueous media in refractory metals: extraction, processing, and applications. The Minerals, Metals, and Materials Society, TMS Publishing, Warrendale, Pennsylvania, pp 213 - 220.

    Google Scholar 

  81. Delimarskii IuK, Markov BF (1961) Electrochemistry of fused salts. Sigma Press Publishing, New York.

    Google Scholar 

  82. Cook NC (1969) Metalliding. Sci Amer 221: 38 - 46.

    CAS  Google Scholar 

  83. Cook NC (1962) Beryllide coatings on metals. US Pat 3,024, 175.

    Google Scholar 

  84. Cook NC (1962) Boride coatings on metal. US Pat 3,024, 176.

    Google Scholar 

  85. Cook NC (1962) Silicide coatings on metals. US Pat 3,024, 177.

    Google Scholar 

  86. Cook NC (1966) Corrosion-resistant chromide coating. US Pat 3,232, 853.

    Google Scholar 

  87. Ilyushchenka NG, Antinogenov AI, Belyaeva GI et al. (1968) Tr 4-ogo Vsesoyuzn Soveshch, 105.

    Google Scholar 

  88. Mellors GW, Senderoff S (1964) Electrolytic deposit of refractory metals. Belg Pat 640,801,

    Google Scholar 

  89. Mellors GW, Senderoff S (1968) Novel compounds of tantalum and niobium (1968) US Pat 3, 398, 068.

    Google Scholar 

  90. Mellors GW, Senderoff S (1969) Electrodeposition of Zr, Ta, Nb, Cr, Hf, W, Mo, V and their alloys. US Pat 3,444, 058.

    Google Scholar 

  91. Balikhin VS (1974) Electroplating of protective tantalum coating. Zasch Metal 10: 459 - 460.

    CAS  Google Scholar 

  92. Balikhin VS, Sukhoverkov IN (1974) Tantalum electroplating. Tsvet Metal 3: 70 - 71.

    Google Scholar 

  93. Noddack W, Tacke I (1925) Naturwiss 13: 57 - 574.

    Google Scholar 

  94. Cardarelli F (1998) Scientific unit conversion: a practical guide to metrication, 1st edn. Springer-Verlag, London p 31.

    Google Scholar 

  95. Lunge G, Naville J (1879) Traité de la grande industrie chimique, tome I. Acide sulfurique et oléum. Masson Cie, Paris.

    Google Scholar 

  96. Péligot EM (1841) CR Acad Sci 12: 735.

    Google Scholar 

  97. Péligot EM (1842) Ann Chim Phys 5: 5.

    Google Scholar 

Further Reading

  • Addison CC (1984) The chemistry of the liquid alkali metals. Wiley, Chichester, UK.

    Google Scholar 

  • Bach RO, and Wasson JR (1984) Lithium and lithium compounds. In: Kirk-Othmer encyclopedia of chemical technology, vol. 14. Wiley Interscience, New York, pp 448 - 476.

    Google Scholar 

  • Chaudron G, Dimitrov C, and Dubois B (1977) Monographies sur les métaux de haute pureté. vol. 3 Groupes lb, 4b, 5b. Masson Cie, Paris.

    Google Scholar 

  • Foltz GE (1993) Lithium metal. In: McKetta JJ (ed.) Inorganics chemical handbook, vol. 2. Marcel Dekker, New York. Gabano JP ( 1983 ) Lithium batteries. Academic Press, London.

    Google Scholar 

  • Greenwood NN, and Earnshaw A (eds) (1984) Chemistry of the elements. Pergamon Press, New York, pp 75-116. Mahi P, Smeets AA, Fray DJ, and Charles JA (1986) Lithium: metal of the future. J Met 38: 20 - 26.

    Google Scholar 

  • Meyer RJ, Pietsch E (eds) (1960) Lithium. In: Gmelin’s Handbuch der Anorganischen Chemie (System Number 20) 8th edn. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Ober JA (1998) Lithium. In: The mineral yearbook, vol. 1, US Geological Survey (USGS).

    Google Scholar 

  • Roskill Information Services Ltd (1999) The economics of lithium, 8th edn. Roskill Information Services Ltd, UK. Whaley TP (1973) Sodium, potassium, rubidium, caesium, and francium. In: Trottman-Dickenson, AF (ed.) Comprehensive inorganic chemistry, vol. 1. Pergamon Press, Oxford, chap. 6, pp 369 - 529.

    Google Scholar 

  • Abramson R, Delisle J-P, Elie X, Salon G, and Peyrelongue J-P. (1981) Apparatus for the purification of a liquid metal for cooling in the core of a fast neutron reactor. US Patent 4,278,499, 14 Jul.

    Google Scholar 

  • Chaudron G, Dimitrov C, Dubois B (1977) Monographies sur les métaux de haute pureté, vol. 3. Groupes lb, 4b, 5b. Masson Cie, Paris.

    Google Scholar 

  • Dumay J-J, Malaval C (1987) Device for purifying liquid metal coolant for a fast neutron nuclear reactor. US Patent 4,713,214, 15 Dec.

    Google Scholar 

  • Foust OJ (1972) Sodium-NaK engineering handbook, vol. 1. Sodium chemistry and physical properties. Gordon Breach. Foust 0] (1976) Sodium-NaK engineering handbook, vol. 2. Sodium flow, heat transfer, intermediate heat exchangers, and steam generators. Gordon Breach.

    Google Scholar 

  • Foust OJ (1978) Sodium-NaK engineering handbook, vol. 3. Sodium systems, safety, handling, and instrumentation. Gordon Breach.

    Google Scholar 

  • Foust OJ (1978) Sodium-NaK engineering handbook, vol. 4. Sodium pumps, valves, pi**, and auxiliary equipment. Gordon Breach.

    Google Scholar 

  • Foust 0) (1979) Sodium-NaK engineering handbook, vol. 5. Sodium purification, materials, heaters, coolers, and radiators. Gordon Breach.

    Google Scholar 

  • Hundal R (US Energy Research and Development Administration) (1976) Liquid metal cold trap. US Patent 3,962,082, 8 Jun.

    Google Scholar 

  • Pascal P, Chrétien A. (eds) (1966) Lithium, sodium. Nouveau traité de chimie minérale, tome 2/1, Masson Cie, Paris. Sittig M (1956). Sodium, its manufacture, properties and uses. American Chemical Society (ACS) Monograph Series (No. 133 ). Reinhold Publishing Corp., New York.

    Google Scholar 

  • Whaley TP (1973) Sodium, potassium, rubidium, caesium, and francium. In: Trottman-Dickenson AF (ed.) Comprehensive inorganic chemistry, vol. 1. Pergamon Press, Oxford, chap. 6, pp 369 - 529.

    Google Scholar 

  • Greer JS et al. (1982). Potassium. In: The Kirk-Othmer encyclopedia of chemical technology, vol. 18. Wiley-Interscience, New York, pp 912 - 920.

    Google Scholar 

  • Whaley TP (1973). Sodium, potassium, rubidium, caesium and francium. In: Trottman-Dickenson AF (ed.). Comprehensive inorganic chemistry, vol. 1. Pergamon Press, Oxford, chap. 6, pp 369 - 529.

    Google Scholar 

  • Hampel CA (1961) In: Rare metals handbook, 2nd ed. Reinhold, New York, pp 434 - 440.

    Google Scholar 

  • Wessel FW (1959-62) Minor metals and minerals: cesium and rubidium. In: Mineral yearbook vol.1, US Geological Survey, Washington, DC.

    Google Scholar 

  • Kjellgren (1954) Beryllium. In: Hampel, CA (ed.) Rare metals handbook. Reinhold Publishing Company, New York. Pinto NP, Greenspan J (1968) Beryllium. In: Gonser BW (ed.) Modern materials, vol. 6. Academic Press, New York. Stonehouse AJ, Marder JM (1995) Beryllium. In: ASM metals handbook, 10th edn. Vol. 2, Properties and selection: nonferrous alloys and special-purpose materials. ASM, Ohio Park, pp 683 - 687.

    Google Scholar 

  • Avedesian M, Baker H (eds) (1998) ASM specialty handbook: magnesium and magnesium alloys. ASM International, Metal Park, OH.

    Google Scholar 

  • Kipouros GJ, Sadoway, DR (1987) The chemistry and electrochemistry of magnesium production. In: Mammantov G, Mamantov CB, Braunstein J (eds) Advances in molten salts, vol. 6. Elsevier, Amsterdam, pp 127 - 209.

    Google Scholar 

  • Strelets KL (1998) Electrolytic production of magnesium. International Magnesium Association, McLean, VA.

    Google Scholar 

  • Mantell CL (1968) Calcium. In: Hampel CA (ed.) Encyclopedia of chemical elements. Reinhold, New York, pp 94-103. Mantell CL (1973) The alkaline earth metals: calcium, barium, and strontium. In: Hampel CA (ed.) Rare metals handbook, 2nd edn. Reinhold, New York, pp 15 - 25.

    Google Scholar 

  • Mantell CL, Hardy C (1945) Calcium metallurgy and technology. Reinhold, New York.

    Google Scholar 

  • Barksdale (1966) Titanium, its occurrence, chemistry and technology. Reinhold, New York.

    Google Scholar 

  • Boyer R, Collings EW, Welsh G (1994) Materials properties handb000k: titanium alloys. ASM Books, Ohio Park. Bringas JE (1995) The metals red book, vol. 2: Nonferrous metals. CASTI Publishing, Edmonton, Canada.

    Google Scholar 

  • Destefani JD (1995) Introduction to titanium and titanium alloys. In: ASM handbook of metals series, vol. 2: Properties and selection: Nonferrous alloys and special-purpose materials 10th edn. ASM, Ohio Park, pp 586-591. Donachie MJ Jr (ed.) (1988) Titanium: a technical guide. ASM Books, Ohio Park.

    Google Scholar 

  • Everhart (1954) Titanium and titanium alloys. Reinhold, New York.

    Google Scholar 

  • Eylon D, Newman JR (1995) Titanium and titanium alloys castings. In: ASM handbook of metals series, vol. 2: Properties and selection: Nonferrous alloys and special-purpose materials 10th edn. ASM, Ohio Park, pp 634 - 646.

    Google Scholar 

  • Lampman S (1995) Wrought titanium and titanium alloys. ASM Handbook of Metals Series, vol. 2: Properties and selection: nonferrous alloys and special-purpose materials 10th edn. ASM, Ohio Park, pp 592 - 633.

    Google Scholar 

  • Schutz RW, Thomas DE (1995) Corrosion of titanium and titanium alloys castings. In: ASM handbook of metals series, vol. 2: Properties and selection: Nonferrous alloys and special-purpose materials 10th edn. ASM, Ohio Park, pp 669 - 706.

    Google Scholar 

  • Smallwood RE (ed.) (1984) Refractory metals and their industrial applications. ASTM STP 849, ASTM, Philadelphia. Timet Company (1997) Titanium and titanium alloys. Titanium Metals Corporation, Denver, CO, USA.

    Google Scholar 

  • Titanium Industries Inc. (1998) Titanium: data and reference manual. Titanium Industries Incorporated, March.

    Google Scholar 

  • Blumenthal WB (1958) The chemical behavior of zirconium. Van Nostrand, Princeton.

    Google Scholar 

  • Hedrick JB (1996) Zirconium. In: Mineral yearbook 1996. US Geological Survey.

    Google Scholar 

  • Larsen (1970) Zirconium and hafnium chemistry. Advan Inorg Chem Radiochem 13: 1 - 333.

    Google Scholar 

  • Lustman B, Kevse F Jr (eds) (1955) Metallurgy of zirconium. McGraw-Hill, New York.

    Google Scholar 

  • Schemel JH (1977) Manual on zirconium and hafnium - STP 639. American Society for Testing and Materials (ASTM). Thomas DE, Hayes ET ( 1960 ) The metallurgy of hafnium. Naval reactors, Division of Reactor Development, US Atomic Energy Commission.

    Google Scholar 

  • Webster RT (1995) Zirconium and hafnium. In: ASM metals handbook, 9th edn, vol. 2: Properties and selection of nonferrous alloys and special purpose materials. ASM, Metal Park, OH, pp 661 - 721.

    Google Scholar 

  • Webster RT (1995) Surface engineering of zirconium and hafnium. In: ASM metals handbook, 9th edn, vol. 2: Properties and selection of nonferrous alloys and special purpose materials. ASM, Metal Park, OH, pp 825 - 855.

    Google Scholar 

  • Webster RT, Yau TL (1995) Corrosion of zirconium and hafnium. In: ASM metals handbook, 9th edn, vol. 2: Properties and selection of nonferrous alloys and special purpose materials. ASM, Metal Park, OH, pp 707 - 721.

    Google Scholar 

  • Balliett RW (1986) Niobium and tantalum in material selection. J Metals September 25 - 27.

    Google Scholar 

  • Bringas JE (ed.) (1993) The metals red book, vol. 2, nonferrous edition. CASTI Publishing.

    Google Scholar 

  • Fairbrother, F (1967) Chemistry of niobium and tantalum. Elsevier, New York.

    Google Scholar 

  • Hampel CA (ed.) (1967) Rare metals handbook, 2nd edn. Reinhold Publishing Corp., New York.

    Google Scholar 

  • Kumar P (1988) High purity niobium for superconductor applications. J Less Common Metals 139: 149 - 158.

    CAS  Google Scholar 

  • Lambert JB (1991) Refractory metals and alloys. In: ASM handbook of metals series, 9th ed., vol. 2: Properties and selection of nonferrous alloys and special-purpose materials. American Society of Metals (ASM), Ohio Park, pp 557 - 585.

    Google Scholar 

  • Machlin I, Begley RT, Weisert ED (eds) (1968) Refractory metal alloys, metallurgy and technology. Plenum Press, New York.

    Google Scholar 

  • Miller GL (1959) Tantalum and niobium. Academic Press, New York.

    Google Scholar 

  • Niobium. Teledyne Wah Chang Albany Technical Note No. TWCA-9209NB (1992) Teledyne Wah Chang, Albany, OR. Niobium and biobium alloys. Cabot Technical Note No. 506-95-2.5M ( 1996 ) Cabot Performance Material Inc., Boyertown, PA.

    Google Scholar 

  • Payton PH (1984) Niobium and niobium compounds. In: Kirk-Othmer encyclopedia of chemical technology, 3rd edn, vol. 15. Wiley-Interscience, New York, pp 820 - 840.

    Google Scholar 

  • Sisco FT, Epremian E (1963) Columbium and tantalum. John Wiley Sons, New York.

    Google Scholar 

  • Smallwood RE (1984) Use of refractory metals in chemical process industries. In: Smallwood RE (ed.) Refractory metals and their industrial applications. ASTM STP 849, ASTM, Philadelphia, pp 106 - 104.

    Google Scholar 

  • Webster RT (1984) Niobium in industrial applications. In: Smallwood RE (ed.) Refractory metals and their industrial applications. ASTM STP 849, ASTM, Philadelphia pp 18 - 27.

    Google Scholar 

  • Wojcik CC (1998) High-temperature niobium alloys. Adv Mater Processes 12: 22 - 31.

    Google Scholar 

  • Bringas JE (eds) (1993) The metals red book, vol. 2, Nonferrous edition. CASTI Publishing.

    Google Scholar 

  • Droegkamp RE, Schussler M, Lambert JB et al. (1984) Tantalum and tantalum compounds. In: Kirk-Othmer encyclopedia of chemical technology, 3rd edn., vol. 22. Wiley-Interscience, New York, pp 541 - 564.

    Google Scholar 

  • Fairbrother F (1967) Chemistry of niobium and tantalum. Elsevier, New York.

    Google Scholar 

  • Hampel CA (ed.) (1967) Rare metals handbook, 2nd edn. Reinhold Publishing Corp., New York.

    Google Scholar 

  • Lambert JB (1991) Refractory metals and alloys. In: ASM Handbook of metals series, 9th edn, vol. 2: Properties and selection of nonferrous alloys and special-purpose materials. American Society of Metals (ASM), Ohio Park, pp 557585.

    Google Scholar 

  • Machlin I, Begley RT, Weisert ED (eds) (1968) Refractory metal alloys, metallurgy and technology. Plenum Press, New York.

    Google Scholar 

  • Miller GL (1959) Tantalum and niobium. Academic Press, New York.

    Google Scholar 

  • Sisco FT, Epremian E (1963) Columbium and tantalum. John Wiley Sons, New York.

    Google Scholar 

  • Smallwood RE (1984) Use of refractory metals in chemical process industries. In: Smallwood RE (ed.) Refractory metals and their industrial applications. ASTM STP 849, ASTM, Philadelphia, pp 106 - 104.

    Google Scholar 

  • Tantalum and tantalum alloys. (1996) Cabot technical note no. 505-95-5M. Cabot Performance Material Inc., Boyertown, PA.

    Google Scholar 

  • Yih SWH, Wang CT (1979) Tungsten: sources, metallurgy, properties, and applications. Plenum Press, New York.

    Google Scholar 

  • Butts A, Coxe CD (1967) Silver: economics, metallurgy, and use. Van Nostrand, New York.

    Google Scholar 

  • Duval C (1958) Platine. In: Pascal P (ed.) Nouveau Traité de chimie minérale, tome XIX: Ru-Os-Rh-Ir-Pd-Pt. Masson Cie, Paris, pp 725 - 741.

    Google Scholar 

  • Howe (ed.) (1949) Bibliography of the platinum metals. Baker and Co., Newark.

    Google Scholar 

  • Callow RJ (1968) The industrial chemistry of the lanthanons, yttrium, thorium, and uranium. Pergamon Press, New York. Cotton SA ( 1991 ) Lanthanides and actinides. Macmillan, London.

    Google Scholar 

  • Greenwood NN and Earnshaw, A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinman, London.

    Google Scholar 

  • Bellamy RG, Hill, NA (1963) Extraction and metallurgy of uranium, thorium, and beryllium. Macmillan, New York.

    Google Scholar 

  • Benedict M, Pigford TH, Levi HW (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill, New York.

    Google Scholar 

  • Callow RJ (1968) The industrial chemistry of the lanthanons, yttrium, thorium, and uranium. Pergamon Press, New York. Cleg JW, Foley DD ( 1958 ) Uranium ore processing. Addison-Wesley, Reading Massachusetts.

    Google Scholar 

  • Cordfunke EHP (1969) The chemistry of uranium. Elsevier, New York (1969).

    Google Scholar 

  • Harrington CD, Ruehle AR (1959) Uranium production technology. Van Nostrand, Princeton.

    Google Scholar 

  • Merritt RC (1971) The Extractive Metallurgy of Uranium. Colorado School of Mines Research Institute, Boulder, Colorado.

    Google Scholar 

  • Roubeault M, Jurain G (1958) Geologie de l’uranium. Masson Cie, Paris.

    Google Scholar 

  • Bellamy RG, Hill NA (1963) Extraction and metallurgy of uranium, thorium, and beryllium. Macmillan, New York. Callow RJ (1968) The industrial chemistry of the lanthanons, yttrium, thorium, and uranium. Pergamon Press, New York. Ross AM ( 1958 ) Thorium, production technology. Addison-Wesley, Reading MA.

    Google Scholar 

  • Smith JF (ed.) (1975) Thorium: preparation and properties. Iowa State University Press.

    Google Scholar 

  • Wilhelm HA (ed.) (1958) The metal thorium. American Society for Metals, Cleveland, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Cardarelli, F. (2000). Less Common Nonferrous Metals. In: Materials Handbook. Springer, London. https://doi.org/10.1007/978-1-4471-3648-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3648-4_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3650-7

  • Online ISBN: 978-1-4471-3648-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation