Vortex Formation in the Heart

  • Chapter
  • First Online:
Vortex Formation in the Cardiovascular System

Abstract

The presence of vortical flow structures that develop inside different cardiac chambers is shown to correlate with functional status of heart, and significantly affects the cardiac pum** efficiency. In this chapter, formation of vortices at different locations inside the heart, and their physiological and clinical significance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RH. Clinical anatomy of the aortic root. Heart. 2000;84(6):670–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew P. Diastolic heart failure demystified. Chest. 2003;124(2):744–53.

    PubMed  Google Scholar 

  • Baccani B et al. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J Biomech. 2002;35(5):665–71.

    PubMed  Google Scholar 

  • Baumgartner H et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiogr. 2009;10(1):1–25.

    PubMed  Google Scholar 

  • Bella JN et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the strong heart study. Circulation. 2002;105(16):1928–33.

    PubMed  Google Scholar 

  • Bellhouse BJ. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res. 1972;6(2):199–210.

    CAS  PubMed  Google Scholar 

  • Bellhouse BJ, Talbot L. The fluid mechanics of the aortic valve. J Fluid Mech Digit Arch. 1969;35(04):721–35.

    Google Scholar 

  • Beppu S et al. Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostasis. Circulation. 1988;78(1):157–64.

    CAS  PubMed  Google Scholar 

  • Berdajs D et al. Annulus fibrosus of the mitral valve: reality or myth. J Card Surg. 2007;22(5):406–9.

    PubMed  Google Scholar 

  • Bleasdale RA, Frenneaux MP. Prognostic importance of right ventricular dysfunction. Heart. 2002;88:323–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt T, Andersson S, Eronen M. Outcome of structural heart disease diagnosed in utero. Scand Cardiovasc J. 2002;36(2):73–9.

    PubMed  Google Scholar 

  • Bolger AF, Heiberg E, Karlsson M, Wigström L, Engvall J, Sigfridsson A, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(5):741–7.

    PubMed  Google Scholar 

  • Bolzon G, Zovatto L, Pedrizzetti G. Birth of three-dimensionality in a pulsed jet through a circular orifice. J Fluid Mech. 2003;493(−1):209–18.

    Google Scholar 

  • Bonow RO et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease) endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(13):e1–142.

    PubMed  Google Scholar 

  • Bonser RS et al. Surgical anatomy of the mitral and tricuspid valve, in mitral valve surgery. London: Springer; 2011. p. 3–19.

    Google Scholar 

  • Buckberg GD et al. Active myocyte shortening during the ‘isovolumetric relaxation’ phase of diastole is responsible for ventricular suction; ‘systolic ventricular filling’. Eur J Cardiothorac Surg. 2006;29(Suppl_1):S98–106.

    PubMed  Google Scholar 

  • Burgess MI et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002;15(6):633–9.

    PubMed  Google Scholar 

  • Campbell KB, Chandra M. Functions of stretch activation in heart muscle. J Gen Physiol. 2006;127(2):89–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carabello BA. Modern management of mitral stenosis. Circulation. 2005;112(3):432–7.

    PubMed  Google Scholar 

  • Carlhall C et al. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am J Physiol Heart Circ Physiol. 2004;287(4):H1836–41.

    CAS  PubMed  Google Scholar 

  • Chen L, Yin FCP, May-Newman K. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J Biomech Eng. 2004;126(2):244–51.

    PubMed  Google Scholar 

  • Choi BW et al. Left ventricular systolic dysfunction diastolic filling characteristics and exercise cardiac reserve in mitral stenosis. Am J Cardiol. 1995;75(7):526–9.

    CAS  PubMed  Google Scholar 

  • da Vinci L. Quademi d’Anatomica II, 1513;9.

    Google Scholar 

  • Dabiri JO, Gharib M. Fluid entrainment by isolated vortex rings. J Fluid Mech. 2004;511:311–31.

    Google Scholar 

  • D’Alonzo GE et al. Survival in patients with primary pulmonary hypertension: results from a National Prospective Registry. Ann Intern Med. 1991;115(5):343–9.

    CAS  PubMed  Google Scholar 

  • Davis JS et al. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell. 2001;107(5):631–41.

    CAS  PubMed  Google Scholar 

  • de Agustin JA et al. The use of three-dimensional echocardiography for the evaluation of and treatment of mitral stenosis. Cardiol Clin. 2007;25(2):311–8.

    PubMed  Google Scholar 

  • de Groote P et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32(4):948–54.

    PubMed  Google Scholar 

  • DeGroff CG et al. Flow in the early embryonic human heart. Pediatr Cardiol. 2003;24(4):375–80.

    CAS  PubMed  Google Scholar 

  • Dincer I, Kumbasar D, Nergisoglu G, Atmaca Y, Kutlay S, Akyurek O, et al. Assessment of left ventricular diastolic function with Doppler tissue imaging: effects of preload and place of measurements. Int J Cardiovasc Imaging. 2002;18(3):155–60.

    PubMed  Google Scholar 

  • Dogan S et al. Prediction of subclinical left ventricular dysfunction with strain rate imaging in patients with mild to moderate rheumatic mitral stenosis. J Am Soc Echocardiogr. 2006;19(3):243–8.

    PubMed  Google Scholar 

  • Dokainish H et al. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 2008;101(10):1504–9.

    PubMed  Google Scholar 

  • Domenichini F, Pedrizzetti G. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput Methods Biomech Biomed Engin. 2011;14(1):95–101.

    PubMed  Google Scholar 

  • Domenichini F, Pedrizzetti G, Baccani B. Three-dimensional filling flow into a model left ventricle. J Fluid Mech. 2005;539:179–98.

    Google Scholar 

  • Dray N, Balaguru D, Pauliks L. Abnormal left ventricular longitudinal wall motion in rheumatic mitral stenosis before and after balloon valvuloplasty: a strain rate imaging study. Pediatr Cardiol. 2008;29(3):663–6.

    PubMed  Google Scholar 

  • Fadlun EA et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys. 2000;161(1):35–60.

    Google Scholar 

  • Firstenberg MS, Greenberg NL, Main ML, Drinko JK, Odabashian JA, Thomas JD, et al. Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J Appl Physiol. 2001;90(1):299–307.

    CAS  PubMed  Google Scholar 

  • Fisher ML, Parisi AF, Plotnick GD, DeFelice CE, Carliner NH, Fortuin NJ. Assessment of severity of mitral stenosis by echocardiographic leaflet separation. Arch Intern Med. 1979;139(4):402–6.

    CAS  PubMed  Google Scholar 

  • Forouhar AS et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312(5774):751–3.

    CAS  PubMed  Google Scholar 

  • Galderisi M. Diastolic dysfunction and diastolic heart failure: diagnostic, prognostic and therapeutic aspects. Cardiovasc Ultrasound. 2005;3(9):1–14.

    Google Scholar 

  • Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation. J Fluid Mech. 1998;360:121–40.

    CAS  Google Scholar 

  • Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA. 2006;103(16):6305–8.

    CAS  PubMed  Google Scholar 

  • Ghafourian K, Falahatpisheh A, Goldstein SA, Pichard AD, Kheradvar A. Outcome analysis of percutaneous balloon mitral valvotomy through vortex formation time index. Circulation 2011;124:A13854

    Google Scholar 

  • Graham Jr TP et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36(1):255–61.

    PubMed  Google Scholar 

  • Gruber PJ, Epstein JA. Development gone awry: congenital heart disease. Circ Res. 2004;94(3):273–83.

    CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton H. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.

    CAS  PubMed  Google Scholar 

  • Holmin C et al. Mitral leaflet separation index: a new method for the evaluation of the severity of mitral stenosis? Usefulness before and after percutaneous mitral commissurotomy. J Am Soc Echocardiogr. 2007;20(10):1119–24.

    PubMed  Google Scholar 

  • Hong G-R et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Imaging. 2008;1(6):705–17.

    Google Scholar 

  • Hove JR et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    CAS  PubMed  Google Scholar 

  • Hugenholtz PG, Ryan TJ, Stein SW, Abelmann WH. The spectrum of pure mitral stenosis. Hemodynamic studies in relation to clinical disability. Am J Cardiol. 1962;10:773–84.

    CAS  PubMed  Google Scholar 

  • Jenkins C, Bricknell K, Marwick TH. Use of real-time three-dimensional echocardiography to measure left atrial volume: comparison with other echocardiographic techniques. J Am Soc Echocardiogr. 2005;18(9):991–7.

    PubMed  Google Scholar 

  • Jiamsripong P et al. Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time. J Am Soc Echocardiogr. 2009;22(4):427–31.

    PubMed  PubMed Central  Google Scholar 

  • Jimenez JH et al. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann Biomed Eng. 2003;31(10):1171–81.

    PubMed  Google Scholar 

  • Jones EAV et al. Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol. 2004;287(4):H1561–9.

    CAS  PubMed  Google Scholar 

  • Karlsson MO et al. Mitral valve opening in the ovine heart. Am J Physiol Heart Circ Physiol. 1998;274(2):H552–63.

    CAS  Google Scholar 

  • Keren G, Sonnenblick EH, LeJemtel TH. Mitral anulus motion. Relation to pulmonary venous and transmitral flows in normal subjects and in patients with dilated cardiomyopathy. Circulation. 1988;78(3):621–9.

    CAS  PubMed  Google Scholar 

  • Kevin LG, Barnard M. Right ventricular failure. Contin Educ Anaesth Crit Care Pain. 2007;7(3):89–94.

    Google Scholar 

  • Kheradvar A. Correlation between transmitral vortex formation and mitral valve’s leaflet length. Circulation. 2010;122(21):A20561.

    Google Scholar 

  • Kheradvar A, Gharib M. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann Biomed Eng. 2007;35(12):2050–64.

    PubMed  Google Scholar 

  • Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng. 2009;37(1):1–13.

    PubMed  Google Scholar 

  • Kheradvar A, Kasalko J, Johnson D, Gharib M An in vitro study of changing profile heights in mitral bioprostheses and their influence on flow. ASAIO J. 2006;52(1):34–8.

    PubMed  Google Scholar 

  • Kheradvar A, Milano M, Gharib M. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 2007;53(1):8–16.

    PubMed  Google Scholar 

  • Kheradvar A, Assadi R, Jutzy KR, Bansal R Transmitral vortex formation: a reliable indicator for pseudonormal diastolic dysfunction. J Am Coll Cardiol. 2008;51:A104.

    Google Scholar 

  • Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn DJ Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr. 2010;23(1):86–94.

    PubMed  Google Scholar 

  • Kheradvar A, Assadi R, Falahatpisheh A, Sengupta PP. Assessment of transmitral vortex formation in patients with diastolic dysfunction, J Am Soc Echocardiogr. 2011 in press.

    Google Scholar 

  • Kheradvar A, Falahatpisheh A. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bi-leaflet bioprosthetic mitral valve. J Heart Valve Dis. 2012 in press.

    Google Scholar 

  • Khouri SJ, Maly GT, Suh DD, Walsh TE. A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr. 2004;17(3):290–7.

    PubMed  Google Scholar 

  • Kilner PJ et al. Asymmetric redirection of flow through the heart. Nature. 2000;404(6779):759–61.

    CAS  PubMed  Google Scholar 

  • Kim WY et al. Two-dimensional mitral flow velocity profiles in pig models using epicardial echo Doppler cardiography. J Am Coll Cardiol. 1994;24(2):532–45.

    CAS  PubMed  Google Scholar 

  • Kim WY et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity map**. J Am Soc Echocardiogr. 1995;26(1):224–38.

    CAS  Google Scholar 

  • Klein AJ, Carroll JD. Left ventricular dysfunction and mitral stenosis. Heart Fail Clin. 2006;2(4):443–52.

    PubMed  Google Scholar 

  • Krueger PS, Gharib M. The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys Fluids. 2003;15(5):1271–81.

    CAS  Google Scholar 

  • La Vecchia L et al. Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J. 2001;142(1):181–9.

    PubMed  Google Scholar 

  • Lefebvre XP, He S, Levine RA, Yoganathan AP. Systolic anterior motion of the mitral valve in hypertrophic cardiomyopathy: an in vitro pulsatile flow study. J Heart Valve Dis. 1995;4(4):422–38.

    CAS  PubMed  Google Scholar 

  • Levine RA et al. Echocardiographic measurement of right ventricular volume. Circulation. 1984;69(3):497–505.

    CAS  PubMed  Google Scholar 

  • Levine RA et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80(3):589–98.

    CAS  PubMed  Google Scholar 

  • Liu A et al. Finite element modeling of blood flow-induced mechanical forces in the outflow tract of chick embryonic hearts. Comput Struct. 2007;85(11–14):727–38.

    Google Scholar 

  • Mangoni AA et al. Outcome following mitral valve replacement in patients with mitral stenosis and moderately reduced left ventricular ejection fraction. Eur J Cardiothorac Surg. 2002;22(1):90–4.

    PubMed  Google Scholar 

  • Mangual J, Domenichini F, Pedrizzetti G. 3D echocardiographic assessment of right ventricular flow pattern. In: Euromech 529 – cardiovascular fluid mechanics. Cagliari; 2011.

    Google Scholar 

  • McAlpine WA. Heart and coronary arteries: an anatomical atlas for clinical diagnosis, radiological investigation, and surgical treatment. New York: Springer Verlag; 1975.

    Google Scholar 

  • Mehta SR et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37(1):37–43.

    CAS  PubMed  Google Scholar 

  • Messika-Zeitoun D et al. Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J. 2007;28(1):72–9.

    PubMed  Google Scholar 

  • Messika-Zeitoun D et al. Impact of degree of commissural opening after percutaneous mitral commissurotomy on long-term outcome. J Am Coll Cardiol Imaging. 2009;2(1):1–7.

    Google Scholar 

  • Mohan JC, Arora R. Effects of atrial fibrillation on left ventricular function and geometry in mitral stenosis. Am J Cardiol. 1997;80(12):1618–20.

    CAS  PubMed  Google Scholar 

  • Mohiaddin RH. Flow patterns in the dilated ischemic left ventricle studied by MR imaging with velocity vector map**. J Magn Reson Imaging. 1995;5(5):493–8.

    CAS  Google Scholar 

  • Moorman AFM, Soufan AT, Hagoort J, De Boer PAJ, Christoffels VM. Development of the building plan of the heart. Ann NY Acad Sci. 2004;1015:171–81.

    PubMed  Google Scholar 

  • Najos-Valencia O et al. Determinants of tissue Doppler measures of regional diastolic function during dobutamine stress echocardiography. Am Heart J. 2002;144(3):516–23.

    PubMed  Google Scholar 

  • Nakamura S et al. Right ventricular ejection fraction during exercise in patients with recent ­myocardial infarction: Effect of the interventricular septum. Am Heart J. 1994;127(1):49–55.

    CAS  PubMed  Google Scholar 

  • Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J Am Coll Cardiol. 1997;30(1):8–18.

    CAS  PubMed  Google Scholar 

  • Nishimura RA et al. ACC/AHA 2008 guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(8):676–85.

    Google Scholar 

  • Nobuyoshi M et al. Percutaneous balloon mitral valvuloplasty: a review. Circulation. 2009;119(8):e211–9.

    PubMed  Google Scholar 

  • Ogunyankin KO et al. Validity of revised Doppler echocardiographic algorithms and composite clinical and angiographic data in diagnosis of diastolic dysfunction. Echocardiography. 2006;23(10):817–28.

    PubMed  Google Scholar 

  • Oh JK et al. The noninvasive assessment of left ventricular diastolic function with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 1997;10(3):246–70.

    CAS  PubMed  Google Scholar 

  • Ommen SR et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788–94.

    CAS  PubMed  Google Scholar 

  • Özdemir K et al. Analysis of the myocardial velocities in patients with mitral stenosis. J Am Soc Echocardiogr. 2002;15(12):1472–8.

    PubMed  Google Scholar 

  • Özer N et al. Left ventricular long-axis function is reduced in patients with rheumatic mitral stenosis. Echocardiography. 2004;21(2):107–12.

    PubMed  Google Scholar 

  • Pasipoularides A et al. Diastolic right ventricular filling vortex in normal and volume overload states. Am J Physiol Heart Circ Physiol. 2003;284(4):H1064–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Rousseau MF. Diastolic function of the nonfilling human left ventricle. J Am Coll Cardiol. 1992;20(7):1524–32.

    CAS  PubMed  Google Scholar 

  • Peacock JA. An in vitro study of the onset of turbulence in the sinus of Valsalva. Circ Res. 1990;67(2):448–60.

    CAS  PubMed  Google Scholar 

  • Pedrizzetti G, Domenichini F. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett. 2005;95(10):108101.

    PubMed  Google Scholar 

  • Pedrizzetti G, Domenichini F, Tonti G. On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng. 2010;38(3):769–73.

    PubMed  Google Scholar 

  • Peskin CS. The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu Rev Fluid Mech. 1982;14(1):235–59.

    Google Scholar 

  • Peskin CS, Wolfe AW. The aortic sinus vortex. Fed Proc. 1978;37(14):2784–92.

    CAS  PubMed  Google Scholar 

  • Peskin CS, McQueen DM, et al. Fluid dynamics of the heart and its valves. In: Othmer HG, editor. Case studies in mathematical modeling: ecology, physiology, and cell biology. Englewood Cliffs: Prentice-Hall; 1996. p. 309–37.

    Google Scholar 

  • Petrie MC et al. Poor concordance of commonly used echocardiographic measures of left ventricular diastolic function in patients with suspected heart failure but preserved systolic function: is there a reliable echocardiographic measure of diastolic dysfunction? Heart. 2004;90(5):511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phoon CKL, Aristizábal O, Turnbull DH. Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model. Am J Physiol Heart Circ Physiol. 2002;283(3):H908–H916.

    CAS  PubMed  Google Scholar 

  • Prinzen FW et al. The time sequence of electrical and mechanical activation during spontaneous beating and ectopic stimulation. Eur Heart J. 1992;13(4):535–43.

    CAS  PubMed  Google Scholar 

  • Reul H, Talukder N, Muller EW. Fluid mechanics of the natural mitral valve. J Biomech. 1981;14(5):361–72.

    CAS  PubMed  Google Scholar 

  • Rifaie O et al. Can a novel echocardiographic score better predict outcome after percutaneous balloon mitral valvuloplasty? Echocardiography. 2009;26(2):119–27.

    PubMed  Google Scholar 

  • Robicsek F. Leonardo da Vinci and the sinuses of Valsalva. Ann Thorac Surg. 1991;52(2):328–35.

    CAS  PubMed  Google Scholar 

  • Ryan LP et al. Description of regional mitral annular nonplanarity in healthy human subjects: a novel methodology. J Thorac Cardiovasc Surg. 2007;134(3):644–8.

    PubMed  Google Scholar 

  • Salgo IS et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106(6):711–7.

    PubMed  Google Scholar 

  • Santhanakrishnan A, Miller LA. Fluid dynamics of heart development. Cell Biochem Biophys. 2011;61:1.

    CAS  PubMed  Google Scholar 

  • Santhanakrishnan, A., Nguyen, N., Cox, J. G., and Miller, L. A. (2009) Flow within Models of the Vertebrate Embryonic Heart. Journal of Theoretical Biology, 259, 449–464.

    PubMed  Google Scholar 

  • Schillaci G et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol. 2002;39(12):2005–11.

    PubMed  Google Scholar 

  • Selamet Tierney ES et al. Changes in left heart hemodynamics after technically successful in-utero aortic valvuloplasty. Ultrasound Obstet Gynecol. 2007;30(5):715–20.

    CAS  PubMed  Google Scholar 

  • Sengupta PP et al. Effects of percutaneous mitral commissurotomy on longitudinal left ventricular dynamics in mitral stenosis: quantitative assessment by tissue velocity imaging. J Am Soc Echocardiogr. 2004;17(8):824–8.

    PubMed  Google Scholar 

  • Sengupta PP et al. Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. J Appl Physiol. 2005;99(3):1104–11.

    PubMed  Google Scholar 

  • Sengupta PP et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol. 2006;47(1):163–72.

    PubMed  Google Scholar 

  • Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S, Milosevc I, et al. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of highresolution Doppler and ultrasonic digital particle imaging velocimetry. J Am Coll Cardiol. 2007;49:899–908.

    PubMed  Google Scholar 

  • Seow S-C, Koh L-P, Yeo T-C. Hemodynamic significance of mitral stenosis: use of a simple, novel index by 2-dimensional echocardiography. J Am Soc Echocardiogr. 2006;19(1):102–6.

    PubMed  Google Scholar 

  • Shariff K, Leonard A. Vortex rings. Annu Rev Fluid Mech. 1992;24:U235–79.

    Google Scholar 

  • Silverman NH, Hudson S. Evaluation of right ventricular volume and ejection fraction in children by two dimensional echocardiography. Pediatr Cardiol. 1983;4:197–204.

    CAS  PubMed  Google Scholar 

  • Snyder II RW, Lange RA, Willard JE, Glamann DB, Landau C, Negus BH, et al. Frequency, cause and effect on operative outcome of depressed left ventricular ejection fraction in mitral stenosis. Am J Cardiol. 1994;73(1):65–9.

    PubMed  Google Scholar 

  • Sohn DW et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30(2):474–80.

    CAS  PubMed  Google Scholar 

  • Surdacki A, Legutko J, Turek P, Dudek D, Zmudka K, Dubiel JS. Determinants of depressed left ventricular ejection fraction in pure mitral stenosis with preserved sinus rhythm. J Heart Valve Dis. 1996;5(1):1–9.

    CAS  PubMed  Google Scholar 

  • Taber LA, Yang M, Podszus WW. Mechanics of ventricular torsion. J Biomech. 1996;29(6):745–52.

    CAS  PubMed  Google Scholar 

  • Taylor TW, Suga H, Goto Y, Okino H, Yamaguchi T. The effects of cardiac infarction on realistic three-dimensional left ventricular blood ejection. J Biomech Eng. 1996;118(1):106–10.

    CAS  PubMed  Google Scholar 

  • Tayyareci Y et al. Early detection of right ventricular systolic dysfunction by using myocardial acceleration during isovolumic contraction in patients with mitral stenosis. Eur J Echocardiogr. 2008;9(4):516–21.

    PubMed  Google Scholar 

  • Van Steenhoven AA, Van Dongen MEH. Model studies of the closing behaviour of the aortic valve. J Fluid Mech Digit Arch. 1979;90(01):21–32.

    Google Scholar 

  • Vennemann P et al. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech. 2006;39(7):1191–200.

    PubMed  Google Scholar 

  • Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng. 2009;37(6):1069–81.

    PubMed  Google Scholar 

  • Whalley GA et al. Comparison of different methods for detection of diastolic filling abnormalities. J Am Soc Echocardiogr. 2005;18(7):710–7.

    PubMed  Google Scholar 

  • Wilkins GT et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988;60(4):299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins-Haug LE et al. In-utero intervention for hypoplastic left heart syndrome – a perinatologist’s perspective. Ultrasound Obstet Gynecol. 2005;26(5):481–6.

    CAS  PubMed  Google Scholar 

  • **e G-Y, Smith MD. Pseudonormal or intermediate pattern? J Am Coll Cardiol. 2002;39(11):1796–8.

    PubMed  Google Scholar 

  • Zamorano J, de Agustín JA. Three-dimensional echocardiography for assessment of mitral valve stenosis. Curr Opin Cardiol. 2009;24(5):415–9. doi:10.1097/HCO.0b013e32832e165b.

    Article  PubMed  Google Scholar 

  • Zehender M et al. Eligibility for and benefit of thrombolytic therapy in inferior myocardial infarction: focus on the prognostic importance of right ventricular infarction. J Am Coll Cardiol. 1994;24(2):362–9.

    CAS  PubMed  Google Scholar 

  • Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105(11):1387–93.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kheradvar, A., Pedrizzetti, G. (2012). Vortex Formation in the Heart. In: Vortex Formation in the Cardiovascular System. Springer, London. https://doi.org/10.1007/978-1-4471-2288-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2288-3_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2287-6

  • Online ISBN: 978-1-4471-2288-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation