Abstract

Many insecticidal products are sold as isomeric mixtures even though the toxicological properties and contribution to environmental residues can differ significantly between isomers. Therefore, increasingly there is a trend toward the use of single-isomer products. Commercial endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a, 6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepine 3-oxide) is a broadspectrum insecticide that is used to control a large range of insects and mites in agricultural and horticultural crops. Endosulfan has traditionally been described as a mixture of two diastereoisomers in a ratio of 70% a-endosulfan and 30% ßendosulfan. Since cancellation in many countries of most cyclodiene insecticide registrations, the ongoing availability of endosulfan has particular importance for use in rotation in resistance management strategies. However, endosulfan is extremely toxic to fish and aquatic invertebrates and has been implicated increasingly in mammalian gonadal toxicity (Singh and Pandey 1990; Sinha et al. 1995, 1997; Turner et al. 1997), genotoxicity (Chaudhuri et al. 1999), and neurotoxicity (Paul and Balasubramaniam 1997). No suitable alternatives have been identified. In this review, we investigate whether an insecticide containing only one of the endosulfan isomers, preferably β-endosulfan, would be likely to have reduced residue problems yet retain the advantages of being able to use a cyclodiene insecticide in integrated pest management (IPM) and resistance management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abalis IM, Eldefrawi ME, Eldefrawi ET (1986) Effects of insecticides on GABA-induced chloride influx into rat brain microsacs. J Toxicol Environ Health 18:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Antonious GF, Byers ME, Snyder JC (1998) Residues and fate of endosulfan on field-grown pepper and tomato. Pestic Sci 54:61–67.

    Article  CAS  Google Scholar 

  • Archer TE, Nazer IK, Crosby DG (1972) Photodecomposition of endosulfan and related products in thin films by ultraviolet light irradiation. J Agric Food Chem 20:954–956.

    Article  PubMed  CAS  Google Scholar 

  • Barnes WW, Ware GW (1965) The absorption and metabolism of Cl4-labeled endosulfan in the housefly. J Econ Entomol 58:286–291.

    PubMed  CAS  Google Scholar 

  • Beck EW, Johnson JC, Woodham DB, Leuck DB, Dawsey LH, Robbins JE, Bowman MC (1966) Residues of endosulfan in meat and milk of cattle fed treated forages. J Econ Entomol 59:1444–1450.

    PubMed  CAS  Google Scholar 

  • Burgoyne TW, Hites RA (1993) Effect of temperature and wind direction on atmospheric conditions of a-endosulfan. Environ Sci Technol 27:910–916.

    Article  CAS  Google Scholar 

  • Cerón JJ, Gutierrez-Panizo C, Barba A, Camara MA (1995) Endosulfan isomers and metabolite residue degradation in carnation (Dianthus caryophllus) byproduct under different environmental conditions. J Environ Sci Health 30:221–232.

    Article  Google Scholar 

  • Chapman J (1998) Laboratory ecotoxicology studies and implications for key pesticides. Minimising the impact of pesticides on the riverine environment: key findings from research with the cotton industry-1998 conference. LWRRDC Occasional Paper 23/ 98. Canberra, ACT.

    Google Scholar 

  • Chaudhuri K, Selvaraj S, Pal AK (1999) Studies on the genotoxicity of endosulfan in bacterial systems. Mutat Res 439:63–67.

    Article  PubMed  CAS  Google Scholar 

  • Chopra NM, Mahfouz AM (1977) Metabolism of endosulfan I, endosulfan II, and endosulfan sulfate in tobacco leaf. J Agric Food Chem 25:32–36.

    Article  CAS  Google Scholar 

  • Cotham WE, Bidleman TF (1989) Degradation of malathion, endosulfan, and fenvalerate in seawater and seawater/sediment microcosms. J Agric Food Chem 37:824–828.

    Article  CAS  Google Scholar 

  • Dorough HW, Huhtanen K, Marshall TC, Bryant HE (1978) Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pest Biochem Physiol 8:241–252.

    Article  CAS  Google Scholar 

  • Dureja P, Mukerjee SK (1982) Photoinduced reactions: part IV-studies on photochemical fate of endosulfan, an important insecticide. Indian J Chem 21:411–413.

    Google Scholar 

  • Edge VE, Ahmad N, Rohas P (1998) Aerial transport of endosulfan: vapour and dust movement. Minimising the impact of pesticides on the riverine environment: key findings from research with the cotton industry-1998 conference. LWRRDC Occasional Paper 23/98. Canberra, ACT.

    Google Scholar 

  • Ffrench-Constant RH (1993) The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol 24:335–345.

    Article  Google Scholar 

  • Ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 48:449–466.

    Article  Google Scholar 

  • Frensh et al. (1957) United States patent 2,799,685.

    Google Scholar 

  • Gant DB, Eldefrawi ME, Eldefrawi AT (1987) Cyclodiene insecticides inhibit GABA receptor-regulated chloride transport. Toxicol Appl Pharmacol 88:313–321.

    Article  PubMed  CAS  Google Scholar 

  • Geering EJ, Nelson SJ (1961) Process for the preparation of organic cyclic sulfites. United States patents 2,983,732.

    Google Scholar 

  • Goebel H, Gorbach S, Knauf W, Rimpau RH, Huttenbach H (1982) Properties, effects, residues and analytics of the insecticide endosulfan. Residue Rev 83:40–41.

    Google Scholar 

  • Gopal M, Mukherjee I (1993) Determination of residues of endosulfan and endosulfan sulfate on eggplant, mustard and chickpea. Pestic Sci 37:67–72.

    Article  CAS  Google Scholar 

  • Guerin TF (2001) Abiological loss of endosulfan and related chlorinated organic compounds from aqueous systems in the presence and absence of oxygen. Environ Pollut 115:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Guerin TF, Kennedy IR (1992) Distribution and dissipation of endosulfan and related cyclodienes in sterile aqueous systems: implications for studies on biodegradation. J Agric Food Chem 40:2315–2323.

    Article  CAS  Google Scholar 

  • Gupta PK, Ehrnebo M (1979) Pharmacokinetics of α-and ²-isomers of racemic endosulfan following intravenous administration in rabbits. Drug Metab Dispos 7:7–9.

    PubMed  CAS  Google Scholar 

  • Gupta PK, Gupta RC (1979) Pharmacology, toxicology and degradation of endosulfan. A review. Toxicology 13:115–130.

    CAS  Google Scholar 

  • Jonsson CM, Toledo MCF (1993) Bioaccumulation and elimination of endosulfan in the fish Yellow Tetra (Hyphessobrycon bifasciatus). Bull Environ Contam Toxicol 50: 572–577.

    Article  PubMed  CAS  Google Scholar 

  • Kathpal TS, Singh A, Dankbar JS, Sing G (1997) Fate of endosulfan in cotton soil under sub-tropical conditions in northern India. Pestic Sci 50:21–27.

    Article  CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants. Environ Sci Technol 13:416–423.

    Article  Google Scholar 

  • Kennedy IR, Ahmad N, Tuite J, Kimber S, Sanchez-Bayo F, Southan S, Hugo L, Wang S, Lee A, Beasley H, Wronski E (1998) Movement and fate of endosulfan on farm. Minimising the impact of pesticides on the riverine environment: key findings from research with the cotton industry-1998 conference. LWRRDC Occasional Paper 23/98. Canberra, ACT.

    Google Scholar 

  • Lindquist DA, Dahm PA (1957) Some chemical and biological experiments with Thiodan. J Econ Entomol 50:483–487.

    CAS  Google Scholar 

  • MacNeil JD, Hikichi M (1976) Degradation of endosulfan and ethion on pears and pear and grape foliage. J Agric Food Chem 24:608–611.

    Article  PubMed  CAS  Google Scholar 

  • Maier-Bode H (1968) Properties, effect, residues, and analytics of the insecticide endosulfan. Residue Rev 22:1–44.

    PubMed  CAS  Google Scholar 

  • Miles JR, Moy P (1979) Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull Environ Contam Toxicol 23:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee I, Gopal M, Yaduraju NT (1992) HCH, Endosulfan, and fluvalinate residue behaviour in pigeonpea (Cajanus cajan L. Millsp). Bull Environ Contam Toxicol 48: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SM, Vaishnavi C (1993) Mini review: bioaccumulation potential and toxicity of endosulfan insecticide to non-target animals. Comp Biochem Physiol 105:347–361.

    Article  CAS  Google Scholar 

  • NRA (1998) National Registration Authority (Australia) review of endosulfan. http:// www. dpie. gov. au/nra/prsendo. html.

    Google Scholar 

  • Paul V, Balasubramaniam E (1997) Effects of single and repeated administration of endosulfan on behaviour and its interaction with centrally acting drugs in experimental animals: a mini review. Environ Toxicol Pharmacol 3:151–157.

    Article  PubMed  CAS  Google Scholar 

  • Peterson SM, Batley GE (1993) The fate of endosulfan in aquatic ecosystems. Environ Pollut 82:143–152.

    Article  PubMed  CAS  Google Scholar 

  • Rao DMR (1989) Studies on the relative toxicity and metabolism of endosulfan to the indian major carp Catla catla with special reference to some biochemical changes induced by the pesticide. Pest Biochem Physiol 33:220–229.

    Article  CAS  Google Scholar 

  • Rao DMR, Devi AP, Murty AS (1980) Relative toxicity of endosulfan, its isomers and formulated products to the fresh water fish Labeo rohita. J Environ Biol 10:245–249.

    Google Scholar 

  • Reviejo AJ, **arron JM, Polo LM (1992) Differential pulse Polarographie study of the hydrolysis of endosulfan and endosulfan sulfate in emulsified medium. Talanta 39: 899–906.

    Article  PubMed  CAS  Google Scholar 

  • Rice CP, Chernyak SM, Hapeman CJ, Bilboulin S (1997) Air-water distribution of the endosulfan isomers. J Environ Qual 26:1101–1106.

    Article  CAS  Google Scholar 

  • Schlinchting HL (1966) Process for the separation of 6,7,8,9,10,10-hexachloro-l,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide isomers. United States patent 3,251,856.

    Google Scholar 

  • Schmidt WF, Hapeman CJ, Rice CP, Bilboulian S (1997) Structure and asymmetry in the isomeric conversion of beta to alpha endosulfan. J Agric Food Chem 45:1023–1026.

    Article  CAS  Google Scholar 

  • Schmidt WF, Bilboulian S, Rice CP, Fettinger JC, McConnell LL, Hapeman CJ (2001) Thermodynamic, spectroscopic and computational evidence for the irreversible conversion of β-to α-endosulfan. J Agric Food Chem 49:5372–5376.

    Article  PubMed  CAS  Google Scholar 

  • Shroff AC, Purohit AP, Vadoraria SD (2002) Process for the stereoselective preparation of insecticide 6,7,8,9,10,10-hexachloro-l,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide. World Patent 02085884.

    Google Scholar 

  • Singh NC, Dasgupta TP, Roberts EV, Mansingh A (1991) Dynamics of pesticides in tropical conditions. 1. Kinetic studies of volatilisation, hydrolysis and photolysis of dieldrin and alpha and beta-endosulfan. J Agric Food Chem 39:575–579.

    Article  CAS  Google Scholar 

  • Singh SK, Pandey RS (1990) Effect of subchronic endosulfan on plasma gonadotropins, testosterone, testicular testosterone and enzymes of androgen biosynthesis. Indian J Exp Biol 28:953–956.

    PubMed  CAS  Google Scholar 

  • Sinha N, Narayan R, Shanker R, Saxena DK (1995) Endosulfan induced biochemical changes in the testis of rats. Vet Hum Toxicol 37:547–549.

    PubMed  CAS  Google Scholar 

  • Sinha N, Narayan R, Saxena DK (1997) Effect of endosulfan on testis of growing rats. Bull Environ Contam Toxicol 58:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland TD, Horne I, Lacey MJ, Harcourt RL, Russell RJ, Oakeshott JG (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl Environ Microbiol 66:2822–2828.

    Article  PubMed  CAS  Google Scholar 

  • Toledo MCF, Jonsson CM (1992) Bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio). Pestic Sci 36:207–211.

    Article  CAS  Google Scholar 

  • Turner KO, Syvanen M, Meizel S (1997) The human acrosome reaction is highly sensitive to inhibition by cyclodiene insecticides. J Androl 18:571–575.

    PubMed  CAS  Google Scholar 

  • Waise SS, Shimizu KD, Ferry JL (2002) Surface-catalysed transformations of aqueous endosulfan. Environ Sci Technol 36:4846–4853.

    Article  Google Scholar 

  • Walse SS, Scott GI, Ferry JL (2003) Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms. J Environ Monit 5:373–379.

    Article  PubMed  CAS  Google Scholar 

  • Weir KW, (2003) Personal Communication.

    Google Scholar 

  • Wolfenbarger DA, Guerra AA (1972) Toxicity of endosulfan and its isomers to the bollworm and tobacco budworm. J Econ Entomol 65:1122–1123.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sutherland, T.D., Horne, I., Weir, K.M., Russell, R.J., Oakeshott, J.G. (2004). Toxicity and Residues of Endosulfan Isomers. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 183. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9100-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9100-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6494-1

  • Online ISBN: 978-1-4419-9100-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation