Basic Molecular Dynamics

  • Chapter
Handbook of Materials Modeling

Abstract

A working definition of molecular dynamics (MD) simulation is technique by which one generates the atomic trajectories of a system of N particles by numerical integration of Newton’s equation of motion, for a specific interatomic potential, with certain initial condition (IC) and boundary condition (BC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 673.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, New York, 1987.

    MATH  Google Scholar 

  2. J. Li, L. Porter, and S. Yip, “Atomistic modeling of finite-temperature properties of crystalline beta-SiC — II. Thermal conductivity and effects of point defects,” J. Nucl. Mater., 255, 139–152, 1998.

    Article  ADS  Google Scholar 

  3. J. Li, “AtomEye: an efficient atomistic configuration viewer,” Model. Simul. Mater. Sci. Eng., 11, 173–177, 2003.

    Article  MATH  ADS  Google Scholar 

  4. D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 1987.

    Google Scholar 

  5. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, 2nd edn., Clarendon Press, Oxford, 1954.

    MATH  Google Scholar 

  6. R. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, Clarendon Press, Oxford, 1989.

    Google Scholar 

  7. S.D. Ivanov, A.P. Lyubartsev, and A. Laaksonen, “Bead-Fourier path integral molec-ular dynamics,” Phys. Rev. E, 67, art. no.-066710, 2003.

    Google Scholar 

  8. T. Schlick, Molecular Modeling and Simulation, Springer, Berlin, 2002.

    MATH  Google Scholar 

  9. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C: the Art of Scientific Computing, 2nd edn., Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  10. C. Gear, Numerical Initial Value Problems in Ordinary Differential Equation, Prentice-Hall, Englewood Cliffs, NJ 1971.

    Google Scholar 

  11. M.E. Tuckerman and G.J. Martyna, “Understanding modern molecular dynamics: techniques and applications,” J. Phys. Chem. B, 104, 159–178, 2000.

    Article  Google Scholar 

  12. S. Nose, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., 81, 511–519, 1984.

    Article  ADS  Google Scholar 

  13. W.G. Hoover, “Canonical dynamics — equilibrium phase-space distributions,” Phys. Rev. A, 31, 1695–1697, 1985.

    Article  ADS  Google Scholar 

  14. D. Beeman, “Some multistep methods for use in molecular-dynamics calculations,” J. Comput. Phys., 20, 130–139, 1976.

    Article  ADS  Google Scholar 

  15. L. Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical proper-ties of Lennard-Jones molecules,” Phys. Rev., 159, 98–103, 1967.

    Article  ADS  Google Scholar 

  16. H. Yoshida, “Construction of higher-order symplectic integrators,” Phys. Lett. A, 150, 262–268, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Sanz-Serna and M. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

    MATH  Google Scholar 

  18. S. Plimpton, “Fast parallel algorithms for short-range molecular-dynamics,” J. Com-put. Phys., 117, 1–19, 1995.

    Article  MATH  ADS  Google Scholar 

  19. W. Smith and T.R. Forester, “DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package,” J. Mol. Graph., 14, 136–141, 1996.

    Article  Google Scholar 

  20. W. Smith, C.W. Yong, and P.M. Rodger, “DL_POLY: application to molecular simu-lation,” Mol. Simul., 28, 385–471, 2002.

    Article  MATH  Google Scholar 

  21. K. Refson, “Moldy: a portable molecular dynamics simulation program for serial and parallel computers,” Comput. Phys. Commun., 126, 310–329, 2000.

    Article  MATH  ADS  Google Scholar 

  22. M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kale, R.D. Skeel, and K. Schulten, “NAMD: a parallel, object oriented molecular dynamics program,” Int. J. Supercomput. Appl. High Perform. Comput, 10, 251–268, 1996.

    Article  Google Scholar 

  23. L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten, “NAMD2: Greater scalability for parallel molecular dynamics,” J. Comput. Phys., 151, 283–312, 1999.

    Article  MATH  ADS  Google Scholar 

  24. H.J.C. Berendsen, D. Vanderspoel, and R. Vandrunen, “Gromacs — a message-passing parallel molecular-dynamics implementation,” Comput. Phys. Commun., 91, 43–56, 1995.

    Article  ADS  Google Scholar 

  25. E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: apackage for molecular simulation and trajectory analysis,” J. Mol. Model., 7, 306–317, 2001.

    Google Scholar 

  26. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, “Charmm — a program for macromolecular energy, minimization, and dynamics calculations,” J. Comput. Chem., 4, 187–217, 1983.

    Article  Google Scholar 

  27. D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. Debolt, D. Ferguson, G. Seibel, and P. Kollman, “Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and freeenergy calculations to simulate the structural and energetic properties of molecules,” Comput. Phys. Commun., 91, 1–41, 1995.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Li, J. (2005). Basic Molecular Dynamics. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_29

Download citation

Publish with us

Policies and ethics

Navigation