Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

It is now generally accepted that contraction of striated muscle occurs when the thin, actin-containing, and the thick, myosin-containing, filaments slide past each other while the length of both types of filaments remains constant (Huxley and Hanson, 1954; Huxley and Niedergerke, 1954; see Chapter 1). To form a theory of muscle contraction, the mechanism has to be defined which drives this sliding process, leading to muscle shortening at maximum speed when the actin and myosin filaments are allowed to slide freely past each other (unloaded isotonic contraction) or leading to development of maximum force when sliding of filaments is prevented (isometric contraction). Of the many proposed processes that are able to generate force or motion between two interdigitating sets of filaments (for a detailed discussion see Huxley, 1974, 1980), the crossbridge theory of muscle contraction (A. F. Huxley, 1957; H. E. Huxley, 1969) has received general acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelstein, R. S. and Eisenberg, E. (1980). Regulation and kinetics of the actin-myosin-ATP interaction. Ann. Rev. Biochem., 49, 921–956

    Article  PubMed  CAS  Google Scholar 

  • Alberty, R. A. (1968). Effect of pH and metal ion concentrations on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. Biol. Chem., 243, 1337–1343

    PubMed  CAS  Google Scholar 

  • Anderson, M. L. and Schoenberg, M. (1987). Possible cooperativity in crossbridge detachment in muscle fibres having magnesium pyrophosphate at the active site. Biophys. J., 52, 1077–1082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagni, M. A., Cecchi, G., Colomo, F. and Tesi, C. (1988). The mechanical characteristics of the contractile machinery at different levels of activation in intact single muscle fibres of the frog. In Sugi, H. and Pollack, G. H. (Eds.), Molecular Mechanisms of Muscle Contraction. Plenum, New York, pp.473–488

    Google Scholar 

  • Brenner, B. (1983a). Cross-bridge attachment during isotonic shortening in single skinned rabbit psoas fibers. Biophys. J., 41, 33a

    Article  Google Scholar 

  • Brenner, B. (1983b). Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys. J., 41, 99–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B. (1984). The rate of force redevelopment in single skinned rabbit psoas fibers. Biophys. J., 45, 155a

    Google Scholar 

  • Brenner, B. (1985a). Sarcomeric domain organization within single skinned rabbit psoas fibers and its effects on laser light diffraction patterns. Biophys. J., 48, 967–982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B. (1985b). Correlation between the cross-bridge cycle in muscle and the actomyosin ATPase cycle in solution, J. Muscle Res. Cell Motil., 6, 659–664

    Article  CAS  Google Scholar 

  • Brenner, B. (1986a). The cross-bridge cycle in muscle. Mechanical, biochemical and structural studies on single skinned rabbit psoas fibers to characterize cross-bridge kinetics in muscle for correlation with the actomyosin ATPase in solution. Basic Res. Cardiol., 81, Suppl. 1, 1–15

    Article  PubMed  CAS  Google Scholar 

  • Brenner, B. (1986b). Zum molekularen Mechanismus der Muskelkontraktion. Mechanische, biochemische und röntgenstrukturanalytische Untersuchungen am isolierten kontraktilen Apparat von Skelettmuskelfasern. Habilitationsschrift an der Eberhard-Karls-Universität Tübingen

    Google Scholar 

  • Brenner, B. (1988a). Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibres: Implications for regulation of muscle contraction. Proc. Natl Acad. Sci. USA, 85, 3265–3269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B. (1988b). An experimental approach to determine cross-bridge turnover kinetics during isometric and isotonic steady state contraction using skinned skeletal muscle fibres of the rabbit. Pflügers Arch., 411, R186

    Google Scholar 

  • Brenner, B. (1988c). Evidence for rapidly reversible cross-bridge attachment to actin in Ca2+-activated skinned rabbit psoas muscle fibers. Pflügers Arch., 412, R79

    Google Scholar 

  • Brenner, B., Chalovich, J., Greene, L. E., Eisenberg, E. and Schoenberg, M. (1986a). Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution. Biophys. J., 50, 685–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B. and Eisenberg, E. (1986). The rate of force generation in muscle: correlation with actomyosin ATPase in solution. Proc. Natl Acad. Sci. USA, 83, 3542–3546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E. and Eisenberg, E. (1982). Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc. Natl Acad. Sci. USA, 79, 7288–7291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B. and Squire, J. M. (1987). Rapid stiffness of single relaxed skinned fish muscle fibres: no detectable crossbridge attachment at low ionic strength. J. Muscle Res. Cell Motil., 8, 66–67

    Google Scholar 

  • Brenner, B. and Yu, L. C. (1985). Equatorial X-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing. Biophys. J., 48, 829–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B., Yu, L. C., Greene, L. E., Eisenberg, E. and Schoenberg, M. (1986b). Ca2+-sensitive cross-bridge dissociation in the presence of MgPPi in skinned rabbit psoas fibers. Biophys. J., 50, 1101–1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, B., Yu, L. C. and Podolsky, R. J. (1984). X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys. J., 46, 299–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bressler, B. H. and Clinch, N. F. (1974). The compliance of contracting skeletal muscle. J. Physiol. (Lond.), 237, 477–493

    Article  CAS  Google Scholar 

  • Cecchi, G., Colomo, F., Lombardi, V. and Piazzesi, G. (1987). Stiffness of frog muscle fibers during rise of tension and relaxation in fixed-end or length-clamped tetani. Pflügers Arch., 409, 39–46

    Article  PubMed  CAS  Google Scholar 

  • Cecchi, G., Griffiths, P. J. and Taylor, S. (1982). Muscular contraction: kinetics of crossbridge attachment studied by high-frequency stiffness measurements. Science, N.Y., 217, 70–72

    Article  CAS  Google Scholar 

  • Chalovich, J. M., Chock, P. B. and Eisenberg, E. (1981). Mechanism of action of troponin-tropomyosin. J. Biol. Chem., 256, 575–578

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chalovich, J. M. and Eisenberg, E. (1982). Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J. Biol. Chem., 257, 2431–2437

    Google Scholar 

  • Chalovich, J. M., Greene, L. E. and Eisenberg, E. (1989). Crosslinked myosin subfragment 1: A stable analogue of the subfragment ATP complex. Proc. Natl Acad. Sci. USA, 80, 4909–4913

    Article  Google Scholar 

  • Chalovich, J. M. and Eisenberg, E. (1986). The effect of troponin tropomyosin on the binding of heavy meromyosin to actin in the presence of ATP. J. Biol. Chem., 261, 5088–5093

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cleworth, D. R. and Edman, K. A. P. (1972). Changes in sarcomere length during isometric tension development in frog skeletal muscle. J. Physiol. (Lond.), 227, 1–17

    Article  CAS  Google Scholar 

  • Cooke, R. and Franks, K. (1980). All myosin heads form bonds with actin in rabbit rigor skeletal muscle. Biochemistry, 19, 2265–2269

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. and Thomas, D. (1980). Spin label studies of the structure and dynamics of glycerinated muscle fibers: applications. Fed. Proc, 39, 1962

    Google Scholar 

  • Craig, R., Greene, L. E. and Eisenberg, E. (1985). Structure of the actin-myosin complex in the presence of ATP. Proc. Natl Acad. Sci. USA, 82, 3247–3251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eastwood, A. B., Wood, D. S., Bock, K. L. and Sorenson, E. E. (1979). Chemically skinned mammalian skeletal muscle I. The structure of skinned rabbit psoas. Tissue Cell, 11, 553–556

    Article  PubMed  CAS  Google Scholar 

  • Ebashi, S., Endo, M. and Ohtsuki, I. (1969). Control of muscle contraction. Quart. Rev. Biophys., 2, 351–384

    Article  CAS  Google Scholar 

  • Edman, K. A. P. (1979). The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol. (Lond.), 291, 143–159

    Article  CAS  Google Scholar 

  • Eisenberg, E. and Greene, L. E. (1980). The relation of muscle biochemistry to muscle physiology. Ann. Rev. Physiol., 42, 293–309

    Article  CAS  Google Scholar 

  • Eisenberg, E. and Hill, T. L. (1978). A cross-bridge model of muscle contraction. Prog. Biophys. Mol. Biol., 33, 55–82

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E. and Hill, T. L. (1985). Muscular contraction and free energy transduction in biological systems. Science, N.Y., 227, 999–1006

    Article  CAS  Google Scholar 

  • Eisenberg, E., Hill, T. L. and Chen, Y. (1980). Cross-bridge model of muscle contraction. Quantitative analysis. Biophys. J., 29, 195–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferenczi, M. A., Homsher, E. and Trentham, D. R. (1984). The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit. J. Physiol. (Lond.), 352, 575–599

    Article  CAS  Google Scholar 

  • Ferenczi, M. A., Simmons, R. M. and Sleep, J. A. (1982). General considerations of cross-bridge models in relation to the dependence on MgATP concentration of mechanical parameters of skinned fibers from frog muscle. In Twarog, B. M., Levine, R. J. C. and Dewey, M. M. (Eds.), Basic Biology of Muscle: A Comparative Approach. Raven Press, New York, p. 91

    Google Scholar 

  • Ford, L. E., Huxley, A. F. and Simmons, R. M. (1977). Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. (Lond.), 269, 441–515

    Article  PubMed Central  CAS  Google Scholar 

  • Ford, L. E., Huxley, A. F. and Simmons, R. M. (1981). The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. (Lond.), 311, 219–249

    Article  PubMed Central  CAS  Google Scholar 

  • Ford, L. E., Huxley, A. F. and Simmons, R. M. (1986). Tension transients during the rise of tetanic tension in frog muscle fibres. J. Physiol. (Lond.), 372, 595–609

    Article  CAS  Google Scholar 

  • Geeves, M. A., Goody, R. S. and Gutfreund, H. (1984). Kinetics of acto.Sl interaction. J. Muscle Res. Cell Motil., 5, 351–361

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A., Jeffries, T. E. and Millar, N. C. (1986). ATP-induced dissociation of rabbit skeletal actomyosin subfragment 1. Characterization of an isomerization of the ternary acto-S1-ATP complex. Biochemistry, 25, 8454–8458

    Article  PubMed  CAS  Google Scholar 

  • Goldman, Y. E. (1987). Kinetics of the actomyosin ATPase in muscle fibers. Ann. Rev. Physiol., 49, 637–654

    Article  CAS  Google Scholar 

  • Goldman, Y. E. and Hibberd, M. G. (1983). Ca2+-dependence of tension transients initiated by photolysis of caged adenosine triphosphate in rabbit skinned muscle fibres. J. Physiol. (Lond.), 341, 38P

    Google Scholar 

  • Goldman, Y. E., Hibberd, M. G. and Trentham, D. R. (1984a). Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5-triphosphate. J. Physiol. (Lond.), 354, 577–604

    Article  CAS  Google Scholar 

  • Goldman, Y. E., Hibberd, M. G. and Trentham, D. R. (1984b). Initiation of active contraction by photogeneration of adenosine-5′-triphosphate in rabbit psoas muscle fibres. J. Physiol. (Lond.), 354, 605–624

    Article  PubMed Central  CAS  Google Scholar 

  • Goldman, Y. E., McCray, J. A. and Ranatunga, K. W. (1987). Transient tension changes initiated by laser temperature jumps in rabbit psoas muscle fibres. J. Physiol. (Lond.), 392, 71–95

    Article  CAS  Google Scholar 

  • Goldman, Y. E. and Simmons, R. M. (1977). Active and rigor muscle stiffness. J. Physiol. (Lond.), 269, 55P–57P

    Google Scholar 

  • Goldman, Y. E. and Simmons, R. M. (1984). Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J. Physiol. (Lond.), 350, 497–518

    Article  CAS  Google Scholar 

  • Goody, R. S., Hofmann, W. and Mannherz, H. G. (1977). The binding constant of ATP to myosin Sl fragment. Eur. J. Biochem., 78, 317–324

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Huxley, A. F. and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.), 184, 170–192; see also Figure 1.14, p. 22

    Article  CAS  Google Scholar 

  • Green, L. E. and Eisenberg, E. (1980a). Dissociation of the actin subfragment-one complex by adenyl-5′-yl imidodiphosphate, ADP, and PPi. J. Biol. Chem., 255, 543–548

    Google Scholar 

  • Greene, L. E. and Eisenberg, E. (1980b). Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proc. Natl Acad. Sci. USA, 77, 2616–2620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene, L. E. and Eisenberg, E. (1982). Interaction of actin and myosin in the presence and absence of ATP. Methods of Enzymology, 85, pp. 709–724

    Article  CAS  Google Scholar 

  • Greene, L. E., Sellers, J. R., Eisenberg, E. and Adelstein, R. S. (1983). Binding of gizzard smooth muscle myosin subfragment-one to actin in the presence and absence of ATP. Biochemistry, 22, 530–535

    Article  PubMed  CAS  Google Scholar 

  • Gutfreund, H. (1972). Enzymes: Physical Principles. Wiley Interscience, London

    Google Scholar 

  • Haselgrove, J. C. (1973). X-ray evidence for the conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol., 37, 341–352

    Article  CAS  Google Scholar 

  • Haselgrove, J. C. (1975). X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol., 92, 113–143

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J. C. and Huxley, H. E. (1973). X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. J. Mol. Biol., 77, 549–568

    Article  PubMed  CAS  Google Scholar 

  • Hibberd, M. G., Dantzig, J. A., Trentham, D. R. and Goldman, Y. E. (1985). Phosphate release and force generation in skeletal muscle fibers. Science, N. Y., 228, 1317–1319

    Article  CAS  Google Scholar 

  • Hibberd, M. G. and Trentham, D. R. (1986). Relationships between chemical and mechanical events during muscular contraction. Ann. Rev. Biophys. Biophys. Chem., 15, 119–161

    Article  CAS  Google Scholar 

  • Highsmith, S. (1977). The effects of temperature and salts on myosin subfragment-1 and F-actin association. Arch. Biochem. Biophys., 180, 404–408

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V. (1964). The effect of load on the heat of shortening of muscle. Proc. Roy. Soc. Lond., Ser. B, 159, 297–318

    Article  CAS  Google Scholar 

  • Hill, T. L. (1968). On the sliding filament model of muscular contraction, II. Proc. Natl Acad. Sci. USA, 61, 98–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill, T. L. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol., 28, 267–340

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L. (1975). Theoretical formalism for the sliding filament model of contraction of striated muscle. Part II. Prog. Biophys. Mol. Biol., 29, 105–159

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., Eisenberg, E. and Chalovich, J. M. (1981). Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Biophys. J., 35, 99–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7, 255–318

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. (1973). A note suggesting that the cross-bridge attachment during muscle contraction may take place in two stages. Proc. Roy. Soc. Lond., Ser. B, 183, 83–86

    Article  CAS  Google Scholar 

  • Huxley, A. F. (1974). Muscular contraction. J. Physiol. (Lond.), 243, 1–43

    Article  CAS  Google Scholar 

  • Huxley, A. F. (1980). Reflections on Muscle. Princeton University Press

    Google Scholar 

  • Huxley, A. F. and Julian, F. J. (1964). Speed of unloaded shortening in frog striated muscle fibres. J. Physiol. (Lond.), 177, 60P–61P

    Google Scholar 

  • Huxley, A. F., Lombardi, V. and Peachey, L. D. (1981). A system for fast recording of longitudinal displacement of a striated muscle fibre. J. Physiol. (Lond.), 317, 12P–13P

    Google Scholar 

  • Huxley, A. F. and Niedergerke, R. (1954). Interference microscopy of living muscle fibres. Nature, 173, 971–974

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. (1971a). Mechanical properties of cross-bridges of frog striated muscle. J. Physiol. (Lond.), 218, 59P

    Google Scholar 

  • Huxley, A. F. and Simmons R. M. (1971b). Proposed mechanism of force generation in striated muscle. Nature, 233, 533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons R. M. (1973). Mechanical transients and the origin of muscular force. Cold Spring Harbor Symp. Quant. Biol., 37, 669–680

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1953). Electron microscope studies of the organization of the filaments in striated muscle. Biochim. Biophys. Acta, 12, 387–394

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1957). The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol., 3, 631–647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huxley, H. E. (1968). Structural differences between resting and rigor muscle. Evidence from intensity changes in the low-angle equatorial x-ray diagram. J. Mol. Biol., 37, 507–520

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969). The mechanism of muscular contraction. Science, N. Y., 164, 1356–1366

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1973). Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spring Harbor Symp. Quant. Biol., 37, 361–376

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1979). Time resolved X-ray diffraction studies on muscle. In Sugi, H. and Pollack, G. H. (Eds.), Cross-bridge Mechanism in Muscle Contraction. University Park Press, Baltimore, p. 391

    Google Scholar 

  • Huxley, H. E. and Brown, W. (1967). The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol., 30, 383–434

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their interpretation. Nature, 173, 973–976

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Kress, M. (1985). Crossbridge behaviour during muscle contraction. J. Muscle Res. Cell Motil., 6, 153–161

    Article  PubMed  CAS  Google Scholar 

  • Julian, F. J. (1969). Activation in a skeletal muscle model with a modification for insect fibrillar muscle. Biophys. J., 9, 547–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura, M. and Tawada, K. (1984). Is the SII portion of the cross-bridge in glycerinated rabbit psoas fibers compliant in the rigor state? Biophys. J., 45, 603–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kress, M., Huxley, H. E., Faruqi, A. R. and Hendrix, J. (1986). Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J. Mol. Biol., 188, 325–342

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, H. J. (1978). Cross-bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibres. Biophys. Struct. Mech., 4, 159–168

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, H. J., Güth, K., Drexler, B., Berberich, W. and Rüegg, J. C. (1979). Investigation of the temperature dependence of the cross bridge parameters for attachment, force generation and detachment deduced from mechano-chemical studies in glycerinated single fibres from the dorsal longitudinal muscle of Lethocerus maximus. Biophys. Struct. Mech., 6, 1–29

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick, M. J. and Davies, R. E. (1969). The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc. Roy. Soc. Lond., Ser. B, 174, 315–353

    Article  CAS  Google Scholar 

  • Kushmerick, M. J. and Krasner, B. (1982). Force and ATPase rate in skinned skeletal muscle fibers. Fed. Proc., 41, 2232–2237

    PubMed  CAS  Google Scholar 

  • Lovell, S. J. and Harrington, W. F. (1981). Measurement of the fraction of myosin heads bound to actin in rabbit skeletal myofibrils in rigor. J. Mol. Biol., 149, 659–674

    Article  PubMed  CAS  Google Scholar 

  • Lowey, S. and Luck, S. M. (1969). Equilibrium binding of ADP to myosin. Biochemistry, 8, 3195–3199

    Article  PubMed  CAS  Google Scholar 

  • Lymn, R. W. and Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10, 4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Magid, A. and Reedy, M. (1980). X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method. Biophys. J., 30, 27–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margossian, S. S. and Lowey, S. (1978). Interaction of myosin subfragments with F-actin. Biochemistry, 17, 5431–5439

    Article  PubMed  CAS  Google Scholar 

  • Marston, S. B. (1973). The nucleotide complexes of myosin in glycerol-extracted muscle fibers. Biochim. Biophys. Acta, 305, 397–412

    Article  PubMed  CAS  Google Scholar 

  • Marston, S. B. (1982). The rates of formation and dissociation of actin-myosin complexes. Biochem. J., 230, 453–460

    Article  Google Scholar 

  • Marston, S. B. and Tregear, R. T. (1972). Evidence for a complex between myosin and ADP in relaxed muscle fibers. Nature New Biol., 235, 23–24

    Article  PubMed  CAS  Google Scholar 

  • Marston, S. B. and Weber, A. (1975). The dissociation constant of the actin-heavy meromyosin subfragment-1 complex. Biochemistry, 14, 3868–3873

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, I., Goldman, Y. E. and Simmons, R. M. (1984). Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J. Mol. Biol., 173, 13–33

    Article  Google Scholar 

  • Matsuda, T. and Podolsky, R. J. (1984). X-ray evidence for two structural states of the actomyosin cross-bridge in muscle fibers. Proc. Natl Acad. Sci. USA, 81, 2364–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Natori, R. (1954). The property and contraction process of isolated myofibrils. Jikeikai Med. J., 1, 119–126

    Google Scholar 

  • Offer, G. and Elliott, A. (1978). Can a myosin molecule bind to two actin filaments? Nature, 271, 325–329

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. A. D. and Squire, J. M. (1973). Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol., 75, 33–55

    Article  PubMed  CAS  Google Scholar 

  • Podolsky, R. J. (1960). Kinetics of muscular contraction: the approach to the steady state. Nature, 188, 666–668

    Article  PubMed  CAS  Google Scholar 

  • Podolsky, R. J. and Nolan, A. C. (1973). Muscle contraction transients, cross-bridge kinetics, and the Fenn effect. Cold Spring Harbor Symp. Quant. Biol., 37, 661–668

    Article  CAS  Google Scholar 

  • Podolsky, R. J. and Teichholz, L. E. (1970). The relation between calcium and contraction kinetics in skinned muscle fibres. J. Physiol. (Lond.), 211, 19–35

    Article  CAS  Google Scholar 

  • Pringle, J. W. S. (1967). The contractile mechanism of insect fibrillar muscle. Prog. Biophys., 17, 1–60

    Article  CAS  Google Scholar 

  • Ramsey, R. W. and Street, S. F. (1940). The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J. Cell Comp. Physiol., 15, 11–34

    Article  CAS  Google Scholar 

  • Reedy, M. K., Holmes, K. C. and Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature (Lond.), 207, 1276–1280

    Article  CAS  Google Scholar 

  • Rosenfeld, S. S. and Taylor, E. W. (1984). The ATPase mechanism of skeletal and smooth muscle acto-subfragment 1. J. Biol Chem., 259, 11908–11919

    PubMed  CAS  Google Scholar 

  • Rosenfeld, S. S. and Taylor, E. W. (1987a). The mechanism of regulation of actomyosin subfragment 1 ATPase. J. Biol Chem., 262, 9984–9993

    PubMed  CAS  Google Scholar 

  • Rosenfeld, S. S. and Taylor, E. W. (1987b). The dissociation of 1-N-6-ethenoadenosine diphosphate from regulated actomyosin subfragment 1. J. Biol Chem., 262, 9994–9999

    PubMed  CAS  Google Scholar 

  • Rudel, R. and Zite-Ferenczy, F. (1979). Interpretation of light diffraction of cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins. J. Physiol (Lond.), 290, 317–330

    Article  CAS  Google Scholar 

  • Schoenberg, M. (1985). Equilibrium muscle cross-bridge behaviour: theoretical considerations. Biophys. J., 48, 467–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoenberg, M. (1988). Characterization of the myosin adenosine triphosphate (M:ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophy. J., 54, 135–148

    Article  CAS  Google Scholar 

  • Schoenberg, M., Brenner, B., Chalovich, J. M., Greene, L. E. and Eisenberg, E. (1984). Cross-bridge attachment in relaxed muscle. In Pollack, G. H. and Sugi, H. (Eds.), Contractile Mechanisms in Muscle. Plenum Press, New York, pp. 269–284

    Chapter  Google Scholar 

  • Schoenberg, M. and Eisenberg, E. (1985). Muscle cross-bridge kinetics in rigor and in the presence of ATP analogues. Biophys. J., 48, 863–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoenberg, M. and Wells, J. B. (1984). Stiffness, force and sarcomere shortening during a twitch in frog semitendinosus muscle bundles. Biophys. J., 45, 389–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simmons, R. M. and Jewell, B. R. (1974). Mechanics and models of muscular contraction. Recent Adv. Physiol, 31, 87–147

    Google Scholar 

  • Sleep, J. A. and Hutton, R. L. (1978). Actin mediated release of ATP from a myosin-ATP complex. Biochemistry, 17, 5423–5430

    Article  PubMed  CAS  Google Scholar 

  • Sleep, J. A. and Hutton, R. L. (1980). Exchange between inorganic phosphate and adenosine 5′-triphosphate in the medium by actomyosin subfragment 1. Biochemistry, 19, 1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Sleep, J. A. and Smith, S. J. (1981). Actomyosin ATPase and muscle contraction. Curr. Top. Bioenerg., 11, 239–286

    CAS  Google Scholar 

  • Squire, J. M. (1972). General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscle. J. Mol. Biol 72, 125–138

    Article  PubMed  CAS  Google Scholar 

  • Squire, J. M. (1981). The Structural Basis of Muscular Contraction. Plenum Press, New York

    Book  Google Scholar 

  • Squire, J. M. and Harford, J. J. (1988). Actin filament organization and myosin head labelling patterns in vertebrate skeletal muscles in the rigor and weak binding states. J. Muscle Res. Cell Motil., 9, 344–358

    Article  PubMed  CAS  Google Scholar 

  • Squire, J. M., Podolsky, R. J., Yu, L. C. and Brenner, B. (1987). Equatorial X-ray diffraction from resting skinned single fibres of fish muscle: little evidence for crossbridge attachment at low ionic strength. J. Muscle Res. Cell Motil., 8, 66

    Google Scholar 

  • Stein, L. A., Chock, P. B. and Eisenberg, E. (1984). The rate-limiting step in the actomyosin adenosinetriphosphatase cycle. Biochemistry, 23, 1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Stein, L. A., Schwarz, R. P., Chock, P. B. and Eisenberg, E. (1979). Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry, 18, 3895–3909

    Article  PubMed  CAS  Google Scholar 

  • Sundell, C. L., Goldman, Y. E. and Peachey, L. D. (1986). Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers. Biophys J., 49, 521–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szent-Györgyi, A. (1949). Free-energy relations and contractions of actomyosin. Biol. Bull., 96, 140–161

    Article  PubMed  Google Scholar 

  • Szent-Györgyi, A. G. (1953). Meromyosins, the subunits of myosin. Arch. Biochem. Biophys., 42, 305–320

    Article  PubMed  Google Scholar 

  • Tamura, Y., Hatta, I., Matsuda, T., Sugi, H. and Tsuchiya, T. (1982). Changes in muscle stiffness during contraction recorded using ultrasonic waves. Nature, 299, 631–633

    Article  PubMed  CAS  Google Scholar 

  • Tawada, K. and Kimura, M. (1986). Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations. J. Muscle Res. Cell Motil., 7, 339–350

    Article  PubMed  CAS  Google Scholar 

  • Taylor, E. W. (1979). Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit. Rev. Biochem., 6, 103–164

    Article  PubMed  Google Scholar 

  • Thomas, D. D. (1987). Spectroscopic probes of muscle cross-bridge action. Ann. Rev. Physiol., 49, 691–709

    Article  CAS  Google Scholar 

  • Tözeren, A. (1988). The influence of doubly-attached cross-bridges on mechanical behaviour of skeletal muscle fibers under equilibrium conditions. Biophys. J., 53, 60a

    Google Scholar 

  • Tözeren, A. and Schoenberg, M. (1986). The effect of cross-bridge clustering and head-head competition on the mechanical response of skeletal muscle under equilibrium conditions. Biophys. J., 50, 875–884

    Article  PubMed  PubMed Central  Google Scholar 

  • Trentham, D. R., Eccleston, J. F. and Bagshaw, C. R. (1976). Kinetic analysis of ATPase mechanisms. Quart. Rev. Biophys., 9, 217–281

    Article  CAS  Google Scholar 

  • Trybus, K. M. and Taylor, E. W. (1980). Kinetic studies of the cooperative binding subfragment 1 to regulated actin. Proc. Natl Acad. Sci. USA, 77, 7209–7213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner, P. D. (1984). Effect of skeletal muscle myosin light chain 2 on the Ca2+-sensitive interaction of myosin and heavy meromyosin with regulated actin. Biochemistry, 23, 5950–5956

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P. D. and Giniger, E. (1981). Calcium-sensitive binding of heavy meromyosin to regulated actin in the presence of ATP. J. Biol. Chem., 256, 12647–12650

    PubMed  CAS  Google Scholar 

  • Webb, M. R., Hibberd, M. G., Goldman, Y. E. and Trentham, D. R. (1986). Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibres from rabbit skeletal muscle: Evidence for Pi binding to a force generating state. J. Biol. Chem., 261, 15557–15564

    PubMed  CAS  Google Scholar 

  • Webb, M. R. and Trentham, D. R. (1981). The mechanism of ATP hydrolysis catalyzed by myosin and actomyosin using rapid reaction techniques to study oxygen exchange. J. Biol. Chem., 256, 10910–10916

    PubMed  CAS  Google Scholar 

  • White, H. D. (1982). Special instrumentation and techniques for kinetic studies of contractile systems. Methods of Enzymology, 85, pp. 698–708

    Article  CAS  Google Scholar 

  • White, H. D. and Taylor, E. W. (1976). Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry, 15, 5818–5826

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. L., Greene, L. E. and Eisenberg, E. (1988). Cooperative turning on of myosin subfragment 1 adenosinetriphosphate activity by the troponin-tropomyosin-actin complex. Biochem., 27, 6987–6993

    Article  CAS  Google Scholar 

  • Wolcott, R. G. and Boyer, P. D. (1974). The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin. Biochem. Biophys. Res. Commun., 57, 709–716

    Article  PubMed  CAS  Google Scholar 

  • Wolcott, R. G. and Boyer, P. D. (1975). Isotopic probes of catalytic steps of myosin adenosine triphosphatase. J. Supramol. Struct., 3, 154–161

    Article  PubMed  CAS  Google Scholar 

  • Xu, S. G., Kress, M. and Huxley, H. E. (1987). X-ray diffraction studies of the structural state of cross-bridges in skinned frog sartorius muscle at low ionic strength. J. Muscle Res. Cell Motil., 8, 39–54

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T., Arata, T. and Oosawa, F. (1985). Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature, 316, 366–369

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T., Kuranaga, I. and Inoue, A. (1982). Interaction of myosin with thin filaments during contraction and relaxation: Effect of ionic strength. J. Biochem., 92, 407–412

    PubMed  CAS  Google Scholar 

  • Yu, L. C. and Brenner, B. (1986). High resolution equatorial x-ray diffraction from single skinned rabbit psoas fibers. Biophys. J., 49, 133–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, L. C. and Brenner, B. (1987). Equatorial X-ray diffraction from fully Ca2+ activated single muscle fibers at low ionic strengths. Biophys. J., 51, 473a

    Article  Google Scholar 

  • Yu, L. C. and Brenner, B. (1989). Structures of actomyosin crossbridges in relaxed and rigor muscle fibers. Biophys. J., 55, 441–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, L. C., Hartt, J. E. and Podolsky, R. J. (1979). Equatorial x-ray intensities and isometric force levels in frog sartorius muscle. J. Mol. Biol., 132, 53–67

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editor and contributors

About this chapter

Cite this chapter

Brenner, B. (1990). Muscle Mechanics and Biochemical Kinetics. In: Squire, J.M. (eds) Molecular Mechanisms in Muscular Contraction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09814-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09814-9_4

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09816-3

  • Online ISBN: 978-1-349-09814-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation