Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs

  • Protocol
  • First Online:
Computational Methods for Predicting Post-Translational Modification Sites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2499))

  • 875 Accesses

Abstract

Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups.

In this study, we developed a novel computational method named “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crane EJ 3rd, Parsonage D, Poole LB, Claiborne A (1995) Analysis of the kinetic mechanism of enterococcal NADH peroxidase reveals catalytic roles for NADH complexes with both oxidized and two-electron-reduced enzyme forms. Biochemistry 34(43):14114–14124

    Article  CAS  PubMed  Google Scholar 

  2. Poole LB, Claiborne A (1988) Evidence for a single active-site cysteinyl residue in the streptococcal NADH peroxidase. Biochem Biophys Res Commun 153(1):261–266

    CAS  PubMed  Google Scholar 

  3. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91(15):7017–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264(3):1488–1496

    Article  CAS  PubMed  Google Scholar 

  5. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ 3rd, Charrier V, Parsonage D (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416

    Article  CAS  PubMed  Google Scholar 

  6. Hall A, Parsonage D, Poole LB, Karplus PA (2010) Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol 402(1):194–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40(8):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stöcker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28(7):558–573. https://doi.org/10.1089/ars.2017.7162

    Article  CAS  PubMed  Google Scholar 

  11. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619):650–653

    Article  CAS  PubMed  Google Scholar 

  12. Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15(4):1129–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Randall LM, Ferrer-Sueta G, Denicola A (2013) Peroxiredoxins as preferential targets in H2O2-induced signaling. Methods Enzymol 527:41–63

    Article  CAS  PubMed  Google Scholar 

  14. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711

    Article  CAS  PubMed  Google Scholar 

  15. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  16. Carvalho LAC, Truzzi DR, Fallani TS, Alves SV, Toledo JC Jr, Augusto O, Netto LES, Meotti FC (2017) Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2. J Biol Chem 292(21):8705–8715. https://doi.org/10.1074/jbc.M116.767657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem 271(26):15315–15321

    Article  CAS  Google Scholar 

  18. Poole LB (2007) The catalytic mechanism of peroxiredoxins. Subcell Biochem 44:61–81

    Article  PubMed  Google Scholar 

  19. Trujillo M, Ferrer-Sueta G, Thomson L, Flohe L, Radi R (2007) Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell Biochem 44:83–113

    Article  PubMed  Google Scholar 

  20. Peskin AV, Cox AG, Nagy P, Morgan PE, Hampton MB, Davies MJ, Winterbourn CC (2010) Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem J 432(2):313–321

    Article  CAS  PubMed  Google Scholar 

  21. Hofmann B, Hecht H-J, Flohé L (2002) Peroxiredoxins. Biol Chem 383:347–364

    CAS  PubMed  Google Scholar 

  22. Knoops B, Loumaye E, Van der Eecken V (2007) Evolution of the peroxiredoxins: taxonomy, homology and characterization. In: Flohé L, Harris JR (eds) Peroxiredoxin systems. Springer, New York, pp 27–40

    Chapter  Google Scholar 

  23. Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43(44):13981–13995

    Article  CAS  PubMed  Google Scholar 

  24. Hall A, Nelson K, Poole LB, Karplus PA (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15(3):795–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furdui CM, Poole LB (2014) Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom Rev 33(2):126–146

    Article  CAS  PubMed  Google Scholar 

  26. Poole LB, Furdui CM, King SB (2020) Introduction to approaches and tools for the evaluation of protein cysteine oxidation. Essays Biochem 64(1):1–17. https://doi.org/10.1042/EBC20190050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Gupta V, Carroll KS, Liebler DC (2014) Site-specific map** and quantification of protein S-sulphenylation in cells. Nat Commun 5:4776

    Article  CAS  PubMed  Google Scholar 

  28. Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27(3-4):322–328

    Article  CAS  PubMed  Google Scholar 

  29. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286

    Article  CAS  PubMed  Google Scholar 

  30. Portillo-Ledesma S, Randall LM, Parsonage D, Dalla Rizza J, Karplus PA, Poole LB, Denicola A, Ferrer-Sueta G (2018) Differential kinetics of two-cysteine peroxiredoxin disulfide formation reveal a novel model for peroxide sensing. Biochemistry 57(24):3416–3424. https://doi.org/10.1021/acs.biochem.8b00188

    Article  CAS  PubMed  Google Scholar 

  31. Heppner DE, Janssen-Heininger YM, van der Vliet A (2017) The role of sulfenic acids in cellular redox signaling: reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 616:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salsbury FR Jr, Knutson ST, Poole LB, Fetrow JS (2008) Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci 17(2):299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K, Nagy P, Grater F, Dick TP (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11(2):156–163

    Article  CAS  PubMed  Google Scholar 

  34. Nelson KJ, Parsonage D, Karplus PA, Poole LB (2013) Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol 527:21–40

    Article  CAS  PubMed  Google Scholar 

  35. Poynton RA, Peskin AV, Haynes AC, Lowther WT, Hampton MB, Winterbourn CC (2016) Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochem J 473(4):411–421

    Article  CAS  PubMed  Google Scholar 

  36. Atkinson HJ, Babbitt PC (2009) An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol 5(10):e1000541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Atkinson HJ, Babbitt PC (2009) Glutathione transferases are structural and functional outliers in the thioredoxin fold. Biochemistry 48(46):11108–11116. https://doi.org/10.1021/bi901180v

    Article  CAS  PubMed  Google Scholar 

  38. Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nat Struct Biol 5(5):400–406

    Article  CAS  PubMed  Google Scholar 

  39. Fomenko DE, Gladyshev VN (2003) Identity and functions of CxxC-derived motifs. Biochemistry 42(38):11214–11225

    Article  CAS  PubMed  Google Scholar 

  40. Schröder E, Ponting CP (1998) Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7(11):2465–2468

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karplus PA, Hall A (2007) Structural survey of the peroxiredoxins. In: Flohé L, Harris JR (eds) Peroxiredoxin systems. Springer, New York, pp 41–60

    Chapter  Google Scholar 

  42. Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS (2011) Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79(3):947–964

    Article  CAS  PubMed  Google Scholar 

  43. Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin TE, Poole LB, Fetrow JS (2017) An atlas of peroxiredoxins created using an active site profile-based approach to functionally relevant clustering of proteins. PLoS Comput Biol 13(2):e1005284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ (2011) PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res 39(Database issue):D332–D337

    Article  CAS  PubMed  Google Scholar 

  45. Akiva E, Brown S, Almonacid DE, Barber AE 2nd, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC (2014) The structure-function linkage database. Nucleic Acids Res 42(Database issue):D521–D530. https://doi.org/10.1093/nar/gkt1130

    Article  CAS  PubMed  Google Scholar 

  46. Knutson ST, Westwood BM, Leuthaeuser JB, Turner BE, Nguyendac D, Shea G, Kumar K, Hayden JD, Harper AF, Brown SD, Morris JH, Ferrin TE, Babbitt PC, Fetrow JS (2017) An approach to functionally relevant clustering of the protein universe: active site profile-based clustering of protein structures and sequences. Protein Sci 26(4):677–699. https://doi.org/10.1002/pro.3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Youngs N, Penfold-Brown D, Bonneau R, Shasha D (2014) Negative example selection for protein function prediction: the NoGO database. PLoS Comput Biol 10(6):e1003644. https://doi.org/10.1371/journal.pcbi.1003644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li F, Zhang Y, Purcell AW, Webb GI, Chou KC, Lithgow T, Li C, Song J (2019) Positive-unlabelled learning of glycosylation sites in the human proteome. BMC Bioinformatics 20(1):112. https://doi.org/10.1186/s12859-019-2700-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. UniProt C (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42(Database issue):D191–D198. https://doi.org/10.1093/nar/gkt1140

    Article  CAS  Google Scholar 

  50. KrishnaVeni CV, Sobha Rani T (2011) On the classification of imbalanced datasets. IJCST 2(SP1):145–148

    Google Scholar 

  51. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  52. Ismail HD, Jones A, Kim JH, Newman RH, Kc DB (2016) RF-Phos: a novel general phosphorylation site prediction tool based on random forest. Biomed Res Int 2016:3281590. https://doi.org/10.1155/2016/3281590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Al-Barakati HJ, Saigo H, Newman RH, Kc DB (2019) RF-GlutarySite: a random forest based predictor for glutarylation sites. Mol Omics 15(3):189–204. https://doi.org/10.1039/c9mo00028c

    Article  CAS  PubMed  Google Scholar 

  54. Wang R, Perez-Riverol Y, Hermjakob H, Vizcaino JA (2015) Open source libraries and frameworks for biological data visualisation: a guide for developers. Proteomics 15(8):1356–1374. https://doi.org/10.1002/pmic.201400377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbu A, She Y, Ding L, Gramajo G (2017) Feature selection with annealing for computer vision and big data learning. IEEE Trans Pattern Anal Mach Intell 39(2):272–286. https://doi.org/10.1109/TPAMI.2016.2544315

    Article  PubMed  Google Scholar 

  56. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system: KDD '16. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM pp 785–794. https://doi.org/10.1145/2939672.2939785

  57. Stahl K, Schneider M, Brock O (2017) EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction. BMC Bioinformatics 18(1):303. https://doi.org/10.1186/s12859-017-1713-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. White C, Ismail HD, Saigo H, Kc DB (2017) CNN-BLPred: a convolutional neural network based predictor for beta-lactamases (BL) and their classes. BMC Bioinformatics 18(Suppl 16):577. https://doi.org/10.1186/s12859-017-1972-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  60. Al-Barakati H, Thapa N, Hiroto S, Roy K, Newman RH, Kc D (2020) RF-MaloSite and DL-malosite: methods based on random forest and deep learning to identify malonylation sites. Comput Struct Biotechnol J 18:852–860. https://doi.org/10.1016/j.csbj.2020.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  62. Geng H, Lu T, Lin X, Liu Y, Yan F (2015) Prediction of protein-protein interaction sites based on naive bayes classifier. Biochem Res Int 2015:978193. https://doi.org/10.1155/2015/978193

    Article  PubMed  PubMed Central  Google Scholar 

  63. Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS, 3rd edn. Springer-Verlag

    Google Scholar 

  64. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI'95: Proceedings of the 14th international joint conference on artificial intelligence—volume 2. ACM, pp 1137–1143

    Google Scholar 

  65. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5):412–424. https://doi.org/10.1093/bioinformatics/16.5.412

    Article  CAS  PubMed  Google Scholar 

  66. **ao J, Turkett WH (2018) K-mer based classifiers extract functionally relevant features to support accurate Peroxiredoxin subgroup distinction. bioR**v https://doi.org/10.1101/387787

  67. Li S, Peterson NA, Kim MY, Kim CY, Hung LW, Yu M, Lekin T, Segelke BW, Lott JS, Baker EN (2005) Crystal structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J Mol Biol 346(4):1035–1046

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dukka B. KC or Leslie B. Poole .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

Results of tenfold cross-validation using individual and cumulative features (PDF 425 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

AL-Barakati, H., Newman, R.H., KC, D.B., Poole, L.B. (2022). Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs. In: KC, D.B. (eds) Computational Methods for Predicting Post-Translational Modification Sites. Methods in Molecular Biology, vol 2499. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2317-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2317-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2316-9

  • Online ISBN: 978-1-0716-2317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation