Measurement of Futile Creatine Cycling Using Respirometry

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Thermogenic adipose tissue plays a vital function in regulating whole-body energy expenditure and nutrient homeostasis due to its capacity to dissipate chemical energy as heat, in a process called non-shivering thermogenesis. A reduction of creatine levels in adipocytes impairs thermogenic capacity and promotes diet-induced obesityKazak et al, Cell 163, 643–55, 2015; Kazak et al, Cell Metab 26, 660–671.e3, 2017; Kazak et al, Nat Metab 1, 360–370, 2019). Mechanistically, thermogenic respiration can be promoted by the liberation of an excess quantity of ADP that is dependent on addition of creatine. A model of a two-enzyme system, which we term the Futile Creatine Cycle, has been posited to support this thermogenic action of creatine. Futile creatine cycling can be monitored in purified mitochondrial preparations wherein creatine-dependent liberation of ADP is monitored through the measurement of oxygen consumption under ADP-limiting conditions. The current model proposes that, in thermogenic fat cells, mitochondria-targeted creatine kinase B (CKB) uses mitochondrial-derived ATP to phosphorylate creatine (Rahbani JF, Nature 590, 480–485, 2021). The creatine kinase reaction generates phosphocreatine and ADP, and ADP stimulates respiration. Next, a pool of mitochondrial phosphocreatine is directly hydrolyzed by a phosphatase, to regenerate creatine. The liberated creatine can then engage mitochondrial CKB to trigger another round of this cycle to support ADP-dependent respiration. In this model, the coordinated action of creatine phosphorylation and phosphocreatine hydrolysis triggers a futile cycle that produces a molar excess of mitochondrial ADP to promote thermogenic respiration (Rahbani JF, Nature 590, 480–485, 2021; Kazak and Cohen, Nat Rev Endocrinol 16, 421–436, 2020). Here, we provide a detailed method to perform respiratory measurements on isolated mitochondria and calculate the stoichiometry of creatine-dependent ADP liberation. This method provides a direct measure of the futile creatine cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ward ZJ et al (2019) Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med 381(25):2440–2450

    Article  PubMed  Google Scholar 

  2. Ligibel JA et al (2014) American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol 32(31):3568–3574

    Article  PubMed  PubMed Central  Google Scholar 

  3. Global BMIMC et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776–786

    Article  Google Scholar 

  4. Speakman JR (2007) A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab 6(1):5–12

    Article  CAS  PubMed  Google Scholar 

  5. Foster DO, Frydman ML (1978) Brown adipose tissue: the dominant site of nonshivering thermogenesis in the rat. Exp Suppl 32:147–151

    CAS  Google Scholar 

  6. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  7. Chouchani ET, Kazak L, Spiegelman BM (2019) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29(1):27–37

    Article  CAS  PubMed  Google Scholar 

  8. Roesler A, Kazak L (2020) UCP1-independent thermogenesis. Biochem J 477(3):709–725

    Article  CAS  PubMed  Google Scholar 

  9. Din MU et al (2018) Postprandial oxidative metabolism of human Brown fat indicates thermogenesis. Cell Metab 28(2):207–216.e3

    Article  Google Scholar 

  10. Carpentier AC et al (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne) 9:447

    Article  PubMed  Google Scholar 

  11. Cypess AM et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cypess AM et al (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21(1):33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schrauwen P, van Marken Lichtenbelt WD (2016) Combatting type 2 diabetes by turning up the heat. Diabetologia 59(11):2269–2279

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301(2):R285–R296

    Article  PubMed  Google Scholar 

  15. van Marken Lichtenbelt WD et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    Article  PubMed  Google Scholar 

  16. Virtanen KA et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525

    Article  CAS  PubMed  Google Scholar 

  17. Betz MJ, Enerback S (2018) Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14(2):77–87

    Article  CAS  PubMed  Google Scholar 

  18. Saito M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7):1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartelt A et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200–205

    Article  CAS  PubMed  Google Scholar 

  20. Berbee JF et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6:6356

    Article  CAS  PubMed  Google Scholar 

  21. Fischer AW et al (2020) Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice. J Lipid Res 61(11):1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Becher T et al (2020) Brown adipose tissue is associated with improved Cardiometabolic health and regulates blood pressure. bioRxiv, 2020.02.08.933754

    Google Scholar 

  23. Blondin DP et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99(3):E438–E446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee P et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63(11):3686–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsushita M et al (2014) Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes 38(6):812–817

    Article  CAS  Google Scholar 

  26. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  27. Mills EL et al (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560(7716):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoneshiro T et al (2019) BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572(7771):614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rahbani JF et al (2021) Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590(7846):480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y et al (2021) Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593(7860):580–585

    Google Scholar 

  31. Watt IN et al (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107(39):16823–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kazak L, Cohen P (2020) Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat Rev Endocrinol 16(8):421–436

    Article  PubMed  Google Scholar 

  33. Kazak L et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertholet AM et al (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile Creatine cycling. Cell Metab 25(4):811–822.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Peter Rank (Rank Brothers Limited) for granting permission to use Fig. 1. Funding: Supported by Canadian Institutes of Health Research grant (PJT-159529) and Canadian Foundation for Innovation John R. Evans Leaders Fund (37919) (to L.K.); Canderel and Charlotte and Leo Karassik fellowships (to J.F.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Kazak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rahbani, J.F., Chouchani, E.T., Spiegelman, B.M., Kazak, L. (2022). Measurement of Futile Creatine Cycling Using Respirometry. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation