Long Noncoding RNAs: An Overview

  • Protocol
  • First Online:
Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2372))

Abstract

Recently an explosion in the discovery of long noncoding RNAs (lncRNAs) was obtained by high-throughput sequencing. Genome-wide transcriptome analyses, in conjugation with research for epigenetic modifications of chromatins, identified a novel type of non–protein coding transcripts longer than 200 nucleotides named lncRNAs . They are gradually emerging as functional and critical participants in many physiological processes. Here we gave an overview of the characteristics, biological functions, and working mechanism for this new class of noncoding RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338(6113):1435–1439

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman J, Slack F, Pandolfi PP et al (2013) Noncoding RNAs and cancer. Cell 153(1):9–10

    Article  PubMed  CAS  Google Scholar 

  6. Orom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154(6):1190–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1(5):391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rupaimoole R, Lee J, Haemmerle M et al (2015) Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis. Cell Rep 13(11):2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoon JH, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Xu Z, Jiang J et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80

    Article  CAS  PubMed  Google Scholar 

  20. Willingham AT, Orth AP, Batalov S et al (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573

    Article  CAS  PubMed  Google Scholar 

  21. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brannan CI, Dees EC, Ingram RS et al (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10(1):28–36

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331(6013):76–79

    Article  CAS  PubMed  Google Scholar 

  24. Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to **st at the X-inactivation centre. Nat Genet 21(4):400–404

    Article  CAS  PubMed  Google Scholar 

  25. Kanduri C, Thakur N, Pandey RR (2006) The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 25(10):2096–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He Y, Vogelstein B, Velculescu VE et al (2008) The antisense transcriptomes of human cells. Science 322(5909):1855–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dieci G, Fiorino G, Castelnuovo M et al (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23(12):614–622

    Article  CAS  PubMed  Google Scholar 

  29. Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  CAS  PubMed  Google Scholar 

  30. Yin QF, Yang L, Zhang Y et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48(2):219–230

    Article  CAS  PubMed  Google Scholar 

  31. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542

    Article  CAS  PubMed  Google Scholar 

  32. Clemson CM, McNeil JA, Willard HF et al (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132(3):259–275

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sado T, Hoki Y, Sasaki H (2005) Tsix silences **st through modification of chromatin structure. Dev Cell 9(1):159–165

    Article  CAS  PubMed  Google Scholar 

  35. Sun BK, Deaton AM, Lee JT (2006) A transient heterochromatic state in **st preempts X inactivation choice without RNA stabilization. Mol Cell 21(5):617–628

    Article  CAS  PubMed  Google Scholar 

  36. Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheik Mohamed J, Gaughwin PM, Lim B et al (2010) Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16(2):324–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533

    Article  CAS  PubMed  Google Scholar 

  39. Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim DH, Marinov GK, Pepke S et al (2015) Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16(1):88–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang K, Huang K, Luo Y et al (2014) Identification and functional analysis of long non-coding RNAs in mouse cleavage stage embryonic development based on single cell transcriptome data. BMC Genomics 15:845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bertani S, Sauer S, Bolotin E et al (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43(6):1040–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kretz M, Webster DE, Flockhart RJ et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26(4):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493(7431):231–235

    Article  CAS  PubMed  Google Scholar 

  46. Sun L, Goff LA, Trapnell C et al (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A 110(9):3387–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang P, Xue Y, Han Y et al (2013) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181):310–313

    Article  CAS  Google Scholar 

  48. Liang M, Li W, Tian H et al (2014) Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis. Sci Rep 4:5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, **a J, Li Q et al (2014) NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem 289(45):31310–31318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kogo R, Shimamura T, Mimori K et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71(20):6320–6326

    Article  CAS  PubMed  Google Scholar 

  51. Niinuma T, Suzuki H, Nojima M et al (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72(5):1126–1136

    Article  CAS  PubMed  Google Scholar 

  52. Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962

    Article  CAS  PubMed  Google Scholar 

  54. Hu X, Feng Y, Zhang D et al (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26(3):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    Article  PubMed  CAS  Google Scholar 

  56. Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu Y, Hu Z, Mangala LS et al (2018) MYC targeted long noncoding RNA DANCR promotes cancer in part by reducing p21 levels. Cancer Res 78(1):64–74

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, He Q, Hu Z et al (2016) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 23(6):522–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng J, Huang X, Tan W et al (2016) Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet 48(7):747–757

    Article  CAS  PubMed  Google Scholar 

  60. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351(6322):153–155

    Article  CAS  PubMed  Google Scholar 

  61. Lyle R, Watanabe D, te Vruchte D et al (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25(1):19–21

    Article  CAS  PubMed  Google Scholar 

  62. Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    Article  CAS  PubMed  Google Scholar 

  63. Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8

    PubMed  PubMed Central  Google Scholar 

  64. Yang L, Lin C, Liu W et al (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gumireddy K, Li A, Yan J et al (2013) Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 32(20):2672–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, by The National Key Research and Development Program of China 2017YFA0105501 (X. Z.), The National Natural Science Foundation of China 81302262 (X. Z.), and The Science and Technology Project of Guangdong Province 2015A020212019 (X. Z.). We apologize to scientists whose work was not discussed here due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aomin Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, D., Wu, M., **ong, M., Xu, C., **ang, P., Zhong, X. (2021). Long Noncoding RNAs: An Overview. In: Zhang, L., Hu, X. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 2372. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1697-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1697-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1696-3

  • Online ISBN: 978-1-0716-1697-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation