Production of High-Quality Antibodies for the Study of Receptors and Ion Channels

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

Abstract

High-quality antibodies must have high specificities and titers. The development and application of high-quality antibodies have greatly contributed to our current understanding of the life sciences, including neuroscience. However, it is often difficult to develop high-quality antibodies for neural proteins with complex and highly ordered structures and compositions, such as receptors and ion channels. As a researcher who has tackled the production of polyclonal antibodies, this chapter introduces the procedures for antigen peptide preparation, immunization, serum preparation, affinity purification, and specificity tests that I have adopted and modified over three decades. I believe that the two key points in high-quality antibody production are the whole-or-short strategy in which the full length or short peptides are preferable to the incomplete length as immunizing peptides and the gold-dust-fishing strategy by which useful antibodies are purified using affinity peptides designed to be shorter than, or displaced from, immunizing peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fiber-recipient layer) of the hippocampal CA3 subfield. Eur J Neurosci 10:478–487

    Article  CAS  Google Scholar 

  2. Fukaya M, Watanabe M (2000) Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90 protein family by protease section pretreatment. A study in the adult mouse brain. J Comp Neurol 426:572–586

    Article  CAS  Google Scholar 

  3. Yoshida T, Fukaya M, Uchigashima M, Kamiya H, Kano M, Watanabe M (2006) Localization of diacylglycerol lipase-α around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751

    Article  CAS  Google Scholar 

  4. Miyazaki T, Yamasaki M, Hashimoto K, Yamazaki M, Abe M, Usui H, Kano M, Sakimura K, Watanabe M (2011) Cav2.1 in cerebellar Purkinje cells regulates competitive excitatory synaptic wiring, cell survival, and cerebellar biochemical compartmentalization. J Neurosci 32:1311–1328

    Article  Google Scholar 

  5. Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, Watanabe M (2011) Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci 31:7700–7714

    Article  CAS  Google Scholar 

  6. Yamasaki M, Okada R, Takasaki C, Toki S, Fukaya M, Natsume R, Sakimura K, Mishina M, Shirakawa T, Watanabe M (2014) Opposing role of NMDA receptor GluN2B and GluN2D in somatosensory development and maturation. J Neurosci 34:11534–11548

    Article  CAS  Google Scholar 

  7. Konno K, Matsuda K, Nakamoto C, Uchigashima M, Miyazaki T, Yamasaki M, Sakimura K, Yuzaki M, Watanabe M (2014) Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum. J Neurosci 34:7412–7424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I appreciate all my colleagues who have used my antibodies in their splendid anatomical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watanabe, M. (2021). Production of High-Quality Antibodies for the Study of Receptors and Ion Channels. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation