Drug Delivery: Hydrophobic Drug Encapsulation into Amphiphilic Block Copolymer Micelles

  • Protocol
  • First Online:
Supramolecules in Drug Discovery and Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2207))

  • 1291 Accesses

Abstract

Drug encapsulation into amphiphilic block copolymer micelles aims to increase drug solubility and minimize drug degradation upon administration, avoid undesirable side effects and ameliorate drug bioavailability. Drug encapsulation methodologies including thin-film hydration method and organic cosolvent method are described in this chapter. Often, it is desirable to determine the most efficient solubilization protocol leading to functional drug delivery nanovehicles in each case. The encapsulation of curcumin into PEO-b-PPO-b-PEO (Pluronic F-127) polymeric micelles through thin-film hydration method presents the most promising results. Indomethacin can be loaded successfully into the hydrophobic cores of PEO-b-PCL amphiphilic block copolymer micelles following both encapsulation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118(14):6844–6892. https://doi.org/10.1021/acs.chemrev.8b00199

    Article  CAS  PubMed  Google Scholar 

  2. Torchilin VP (2005) Block copolymer micelles as a solution for drug delivery problems. Expert Opin Ther Pat 15(1):63–75. https://doi.org/10.1517/13543776.15.1.63

    Article  CAS  Google Scholar 

  3. Fairbanks BD, Gunatillake PA, Meagher L (2015) Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT). Adv Drug Deliv Rev 91:141–152. https://doi.org/10.1016/j.addr.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  4. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29(13):4350–4356. https://doi.org/10.1021/la304836e

    Article  CAS  PubMed  Google Scholar 

  5. Chiappetta DA, Sosnik A (2007) Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66(3):303–317. https://doi.org/10.1016/j.ejpb.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  6. Sahu A, Kasoju N, Goswami P, Bora U (2011) Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl 25(6):619–639. https://doi.org/10.1177/0885328209357110

    Article  CAS  PubMed  Google Scholar 

  7. Bodratti AM, Alexandridis P (2018) Formulation of poloxamers for drug delivery. J Funct Biomater 9(1):11. https://doi.org/10.3390/jfb9010011

    Article  CAS  PubMed Central  Google Scholar 

  8. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J (2008) Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 86(2):300–310. https://doi.org/10.1002/jbm.a.31584

    Article  CAS  PubMed  Google Scholar 

  9. Gou M, Men K, Shi H, **ang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567. https://doi.org/10.1039/c0nr00758g

    Article  CAS  PubMed  Google Scholar 

  10. Meier MAR, Aerts SNH, Staal BBP, Rasa M, Schubert US (2005) PEO-b-PCL block copolymers: synthesis, detailed characterization, and selected micellar drug encapsulation behavior. Macromol Rapid Commun 26(24):1918–1924. https://doi.org/10.1002/marc.200500591

    Article  CAS  Google Scholar 

  11. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5(1):3. https://doi.org/10.1186/1477-3155-5-3

    Article  CAS  Google Scholar 

  12. Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Springer, New York, NY, pp 453–470. https://doi.org/10.1007/978-0-387-46401-5_20

    Chapter  Google Scholar 

  13. Liu M, Teng CP, Win KY, Chen Y, Zhang X, Yang DP, Li Z, Ye E (2019) Polymeric encapsulation of turmeric extract for bioimaging and antimicrobial applications. Macromol Rapid Commun 40(5):e1800216. https://doi.org/10.1002/marc.201800216

    Article  CAS  PubMed  Google Scholar 

  14. Nalamachu S, Wortmann R (2014) Role of indomethacin in acute pain and inflammation management: a review of the literature. Postgrad Med 126(4):92–97. https://doi.org/10.3810/pgm.2014.07.2787

    Article  PubMed  Google Scholar 

  15. Dupeyron D, Kawakami M, Ferreira AM, Caceres-Velez PR, Rieumont J, Azevedo RB, Carvalho JC (2013) Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant. Int J Nanomedicine 8:3467–3477. https://doi.org/10.2147/IJN.S47621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9(6):304–316. https://doi.org/10.1016/j.ajps.2014.05.005

    Article  Google Scholar 

  17. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1–2):176–185. https://doi.org/10.1016/j.ijpharm.2009.04.030

    Article  CAS  PubMed  Google Scholar 

  18. Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP (2006) Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm 315(1–2):148–157. https://doi.org/10.1016/j.ijpharm.2006.02.018

    Article  CAS  PubMed  Google Scholar 

  19. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2–3):189–212. https://doi.org/10.1016/S0168-3659(02)00009-3

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM (2015) The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20(8):14293–14311. https://doi.org/10.3390/molecules200814293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Del Arco M, Cebadera E, Gutierrez S, Martin C, Montero M, Rives V, Rocha J, Sevilla M (2004) Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study. J Pharm Sci 93(6):1649–1658. https://doi.org/10.1002/jps.20054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been co-financed by the European Union and Greek national funds through the program “Support for Researchers with Emphasis on Young Researchers” (call code: EDBM34, ΚΕ 14995) and under the research title “Preparation and study of innovative forms of administration of pharmaceutical molecules targeting at improved pharmacological properties.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios Pispas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chroni, A., Chrysostomou, V., Skandalis, A., Pispas, S. (2021). Drug Delivery: Hydrophobic Drug Encapsulation into Amphiphilic Block Copolymer Micelles. In: Mavromoustakos, T., Tzakos, A.G., Durdagi, S. (eds) Supramolecules in Drug Discovery and Drug Delivery. Methods in Molecular Biology, vol 2207. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0920-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0920-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0919-4

  • Online ISBN: 978-1-0716-0920-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation