Exploration of the Neurobiological Basis for a Three-System, Multiattribute Model of Memory

  • Chapter
Behavioral Neuroscience of Learning and Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 37))

Abstract

The structure and utilization of memory is central to one’s knowledge of the past, interpretation of the present, and prediction of the future. Therefore, the understanding of the structural and process components of memory systems at the psychological and neurobiological level is of paramount importance. There have been a number of attempts to divide learning and memory into multiple memory systems. Schacter and Tulving, Memory systems 1994. MIT Press, Cambridge (1994) have suggested that one needs to define memory systems in terms of the kind of information to be represented, the processes associated with the operation of each system, and the neurobiological substrates, including neural structures and mechanisms, that subserve each system. Furthermore, it is likely that within each system there are multiple forms or subsystems associated with each memory system and there are likely to be multiple processes that define the operation of each system. Finally, there are probably multiple neural structures that form the overall substrate of a memory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1996) Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning. Behav Brain Res 82:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 111:920–936

    Article  CAS  PubMed  Google Scholar 

  • Chiba AA, Kesner RP, Reynolds AM (1994) Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. Behav Neural Biol 61:123–131

    Article  CAS  PubMed  Google Scholar 

  • Chiba AA, Kesner RP, Gibson CJ (1997) Memory for temporal order of new and familiar spatial location sequences: Role of the medial prefrontal cortex. Learning and Memory 4:311–317

    Article  CAS  PubMed  Google Scholar 

  • Chiba AA, Kesner RP, Jackson P (2002) Two forms of spatial memory: a double dissociation between the parietal cortex and the hippocampus in the rat. Behav Neurosci 116:874–883

    Article  PubMed  Google Scholar 

  • Cho YH, Kesner RP (1996) Involvement of entorhinal cortex or parietal cortex in long-term spatial discrimination memory in rats: retrograde amnesia. Behav Neurosci 110:436–442

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Kesner RP, Brodale S (1995) Retrograde and anterograde amnesia for spatial discrimination in rats: role of hippocampus, entorhinal cortex and parietal cortex. Psychobiology 23:185–194

    Google Scholar 

  • Churchwell JC, Kesner RP (2011) Hippocampal-prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behav Brain Res 225:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen NJ, Eichenbaum HB (1993) Memory, amnesia, and hippocampal function. MIT Press, Cambridge

    Google Scholar 

  • Corwin JV, Fussinger M, Meyer RC, King VR, Reep RL (1994) Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats. Behav Brain Res 61:79–86

    Article  CAS  PubMed  Google Scholar 

  • Day M, Langston R, Morris RG (2003) Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature 424:205–209

    Article  CAS  PubMed  Google Scholar 

  • deBruin JPC, Swinkels WAM, deBrabander JM (1997) Response learning of rats in a Morris water maze: Involvement of the medial prefrontal cortex. Behav Brain Res 85:47–55

    Article  CAS  Google Scholar 

  • DeCoteau WE, Kesner RP (1998) Effects of hippocampal and parietal cortex lesions on the processing of multiple object scenes. Behav Neurosci 112:68–82

    Article  CAS  PubMed  Google Scholar 

  • DeCoteau WE, Kesner RP, Williams JM (1997) Short-term memory for food reward magnitude: the role of the prefrontal cortex. Behav Brain Res 88:239–249

    Article  CAS  PubMed  Google Scholar 

  • Delatour B, Gisquet-Verrier P (1996) Prelimbic cortex specific lesions disrupt delayed variable response tasks in the rat. Behav Neurosci 110:1282–1298

    Article  CAS  PubMed  Google Scholar 

  • DiMattia BV, Kesner RP (1988) Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation. Behav Neurosci 102:471–480

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H (1994) The hippocampal system and declarative memory in humans and animals: experimental analysis and historical origins. In Schacter DL, Tulving E (eds) Memory systems 1994. MIT Press, Cambridge, pp 39–63

    Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representation that underlie declarative memory. Neuron 44:109–120

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Clegg RA, Feeley A (1983) Reexamination of functional subdivisions of the rodent prefrontal cortex. Exp Neurol 79:434–451

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  CAS  PubMed  Google Scholar 

  • Estes WK (1986) Memory for temporal information. In: Michon JA, Jackson JL (eds) Time, mind and behavior. Springer, New York, pp 151–168

    Google Scholar 

  • Ferbinteanu J, Holsinger RM, McDonald RJ (1999) Lesions of the medial or lateral perforant path have different effects on hippocampal contributions to place learning and fear conditioning to context. Behav Brain Res 101:65–84

    Article  CAS  PubMed  Google Scholar 

  • Foreman N, Save E, Thinus-Blanc C, Buhot MC (1992) Visually guided locomotion, distractibility, and the missing-stimulus effect in hooded rates with unilateral or bilateral lesions of parietal cortex. Behav Neurosci 106:529–538

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2002a) The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiol Learn Mem 77:338–353

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2002b) Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behav Neurosci 116:63–71

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2003a) Recognition memory for complex visual discrimination is influenced by stimulus interference in rodents with perirhinal cortex damage. Learn Mem 10:525–530

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert PE, Kesner RP (2003b) Localization of function within the dorsal hippocampus: the role of the CA3 subregion in paired-associate learning. Behav Neurosci 117:1385–1394

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2006) The role of dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav Brain Res 169:142–149

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636

    Article  CAS  PubMed  Google Scholar 

  • Gold E, Kesner RP (2005) The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus 15:808–814

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792–1794

    Article  CAS  PubMed  Google Scholar 

  • Harrison LD, Mair RG (1996) A comparison of the effects of frontal cortical and thalamic lesions on measures of spatial learning and memory in the rat. Behav Brain Res 75:195–206

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Wyble BP (1997) Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res 89:1–34

    Article  CAS  PubMed  Google Scholar 

  • Ho JW-T, Narduzzo KE, Outram A, Tinsley CJ, Henley JM, Warburton EC, Brown MW (2011) Contributions of area Te2 to rat recognition memory. Learn Mem 18:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunsaker MR, Mooy GG, Swift JS, Kesner RP (2007) Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behav Neurosci 121:742–750

    Article  PubMed  Google Scholar 

  • Hunsaker MR, Lee B, Kesner RP (2008) Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res 188:310–315

    Article  CAS  PubMed  Google Scholar 

  • Jackson PA, Kesner RP, Amann K (1998) Memory for duration: role of hippocampus and medial prefrontal cortex. Neurobiol Learn Mem 70:328–348

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP (1989) Retrospective and prospective coding of information: role of the medial prefrontal cortex. J Exper Brain Res 74:163–167

    CAS  Google Scholar 

  • Kesner RP (1990) Memory for frequency in rats: role of the hippocampus and medial prefrontal cortex. Behav Neural Biol 53:402–410

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP (1998a) Neural mediation of memory for time: role of the hippocampus and medial prefrontal cortex. Psychon Bull Rev 5:585–596

    Article  Google Scholar 

  • Kesner RP (1998b) Neurobiological views of memory. In: Martinez JL, Kesner RP (eds) The neurobiology of learning and memory. Academic, San Diego, pp 361–416

    Chapter  Google Scholar 

  • Kesner RP (1999) Perirhinal cortex and hippocampus mediate parallel processing of object and spatial location information. Behav Brain Sci 22:455–479

    Article  Google Scholar 

  • Kesner RP (2000a) Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology 28:219–228

    Google Scholar 

  • Kesner RP (2000b) Behavioral analysis of the contribution of the hippocampus and parietal cortex to the processing of information: Interactions and dissociations. Hippocampus 10:483–490

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP (2007) Neurobiological views of memory. In: Kesner RP, Martinez JL (eds) The neurobiology of learning and memory, 2nd edn. Academic Press, San Diego, CA, pp 271–304

    Chapter  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431

    Article  PubMed  Google Scholar 

  • Kesner RP, Creem-Regehr SH (2013) Parietal contributions to spatial cognition. In: Nadel L, Waller D (eds) Handbook of spatial cognition. American Psychological Association, Washington, pp 35–64

    Chapter  Google Scholar 

  • Kesner RP, Gilbert P (2006) The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response. Eur J Neurosci 23:1888–1894

    Article  PubMed  Google Scholar 

  • Kesner RP, Holbrook T (1987) Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions. Neuropsychologia 25:653–664

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Hopkins RO (2006) Mnemonic functions of the hippocampus: a comparison between animals and humans. Biol Psychol 73:3–18

    Article  PubMed  Google Scholar 

  • Kesner RP, Warthen DK (2010) Implications of CA3 NMDA and opiate receptors for spatial pattern completion in rats. Hippocampus 20:550–557

    CAS  PubMed  Google Scholar 

  • Kesner RP, DiMattia BV, Crutcher KA (1987) Evidence for neocortical involvement in reference memory. Behav Neural Biol 47:40–53

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Farnsworth G, DiMattia BV (1989) Double-dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behav Neurosci 103:956–961

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Fansworth G, Kametani H (1991) Role of parietal cortex and hippocampus in representing spatial information. Cereb Cortex 1:367–373

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Bolland B, Dakis M (1993) Memory for spatial locations, motor responses, and objects: triple dissociations among the hippocampus, caudate nucleus and extrastriate visual cortex. Exp Brain Res 93:462–470

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Hunt ME, Williams JM, Long JM (1996) Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cereb Cortex 6:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Lee I, Gilbert P (2004) A behavioral assessment of hippocampal function based on a subregional analysis. Reviews Neuroscience 15:333–351

    Article  Google Scholar 

  • Kesner RP, Hunsaker MR, Warthen MW (2008) The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behav Neurosci 122:1217–1225

    Article  PubMed  Google Scholar 

  • Kim J, Ragozzino ME (2005) The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83:125–133

    Article  PubMed  PubMed Central  Google Scholar 

  • King VR, Corwin JV (1992) Comparison of hemi-inattention produced by unilateral lesions of the posterior parietal cortex or medial agranular prefrontal cortex in rats: neglect, extinction, and the role of stimulus distance. Behav Brain Res 54:117–131

    Article  Google Scholar 

  • Kohler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504–522

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Walkey J (1987) Behavioural and anatomical studies of the posterior parietal cortex in the rat. Behav Brain Res 23:127–145

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 23:1517–1523

    CAS  PubMed  Google Scholar 

  • Levy WB (1996) A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6:579–590

    Article  CAS  PubMed  Google Scholar 

  • Lipton PA, Alvarez P, Eichenbaum H (1999) Crossmodal associative memory representation in rodent orbitofrontal cortex. Neuron 22:349–359

    Article  CAS  PubMed  Google Scholar 

  • Long JM, Kesner RP (1998) The effects of hippocampal and parietal cortex lesions on memory for egocentric distance and spatial location information in rats. Behav Neurosci 112:480–495

    Article  CAS  PubMed  Google Scholar 

  • Long JM, Mellem JE, Kesner RP (1998) The effects of parietal cortex lesions on an object/spatial location paired-associate task in rats. Psychobiology 26:128–133

    Google Scholar 

  • Maaswinkel H, Gispen WH, Spruijut BM (1996) Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res 79:51–59

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc B: Biol Sci 262:23–81

    Article  CAS  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415

    Article  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time ask. Cereb Cortex 6:470–481

    Article  CAS  PubMed  Google Scholar 

  • Nadel L (1994) Multiple memory systems: what and why, an update. In Schacter DL, Tulving E (eds) Memory systems 1994. MIT Press, Cambridge, pp 39–63

    Google Scholar 

  • Neave N, Lloyd S, Sahgal A, Aggleton JP (1994) Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat. Behav Brain Res 65:89–101

    Article  CAS  PubMed  Google Scholar 

  • Neill WT, Mathis KM (1995) Transfer-inappropriate processing: negative priming and related phenomena. Psychol Learn Motiv 38:1–44

    Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Olton DS (1983) Memory functions and the hippocampus. In: Seifert W (ed) Neurobiology of the hippocampus. Academic, New York

    Google Scholar 

  • Otto T, Eichenbaum H (1992) Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav Neurosci 106:762–775

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S et al (1988) Premotor cortex in the rat. Behav Neurosci 102:101–109

    Article  CAS  PubMed  Google Scholar 

  • Poucet B (1989) Object exploration, habituation, and response to a spatial change in rats following septal or medial frontal cortical damage. Behav Neurosci 103:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Kesner RP (1998) The effects of muscarinic cholinergic receptor blockade in the rat anterior cingulate and prelimbic/infralimbic cortices on spatial working memory. Neurobiol Learn Mem 69:241–257

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Kesner RP (1999) The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behav Brain Res 1:103–112

    Google Scholar 

  • Ragozzino ME, Adams S, Kesner RP (1998) Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav Neurosci 112:293–303

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Wilcox C, Raso M, Kesner RP (1999a) Involvement of the medial prefrontal cortex subregions in strategy switching. Behav Neurosci 113:32–41

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME, Detrick S, Kesner RP (1999b) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19:4585–4594

    CAS  PubMed  Google Scholar 

  • Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of cortico-cortical and thalamic connections. Exp Brain Res 100:67–84

    Article  CAS  PubMed  Google Scholar 

  • Rogers JL, Kesner RP (2007) Hippocampal-parietal cortex interactions: evidence from a disconnection study in the rat. Behav Brain Res 179:19–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET (1996) A theory of hippocampal function in memory. Hippocampus 6:601–620

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79:1–48

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Save E, Moghaddam M (1996) Effects of lesions of the associative parietal cortex on the acquisition and use of spatial memory in egocentric and allocentric navigation tasks in the rat. Behav Neurosci 110:74–85

    Article  CAS  PubMed  Google Scholar 

  • Save E, Poucet B (2000) Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behav Brain Res 109:195–206

    Article  CAS  PubMed  Google Scholar 

  • Save E, Buhot M-C, Foreman N, Thinus-Blanc C (1992) Exploratory activity and response to a spatial change in rats with hippocampal or posterior parietal cortical lesions. Behav Brain Res 47:113–127

    Article  CAS  PubMed  Google Scholar 

  • Schacter DL (1987) Implicit memory: history and current status. J Exp Psychol Learn Mem Cogn 13:501–518

    Article  Google Scholar 

  • Schacter DL, Tulving E (eds) (1994) Memory systems 1994. MIT Press, Cambridge

    Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrotal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    CAS  PubMed  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 109:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Shapiro ML, Olton DS (1994) Hippocampal function and interference. In: Schacter DL, Tulving E (eds) Memory systems 1994. MIT Press, Cambridge, pp 141–146

    Google Scholar 

  • Shaw C, Aggleton JP (1993) The effects of fornix and medial prefrontal lesions on delayed non-matching-to-sample by rats. Behav Brain Res 54:91–102

    Article  CAS  PubMed  Google Scholar 

  • Spear NF (1976) Retrieval of memories: a psychobiological approach In Estes WK (ed) Handbook of learning and cognitive processes (vol 4). Attention and memory. Erlbaum, Hillsdale

    Google Scholar 

  • Squire LR (1994) Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. In: Schacter DL, Tulving E (eds) Memory systems 1994. MIT Press, Cambridge, pp 203–231

    Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  CAS  PubMed  Google Scholar 

  • Tees RC (1999) The effects of posterior parietal cortex and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav Brain Res 106:55–73

    Article  CAS  PubMed  Google Scholar 

  • Tulving E (1983) Elements of episodic memory. Clarendon, Oxford

    Google Scholar 

  • Underwood BJ (1969) Attributes of memory. Psychol Rev 76:559–573

    Article  Google Scholar 

  • Uylings HBM, van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31–61

    Article  CAS  PubMed  Google Scholar 

  • Van Groen T, Wyss JM (1990) The connections of presubiculum and parasubiculum in the rat. Brain Res 518:227–243

    Article  PubMed  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    Article  CAS  PubMed  Google Scholar 

  • Weeden CSS, Hu NJ, Ho LUN, Kesner RP (2014) The role of the ventral dentate gyrus in olfactory pattern separation. Hippocampus 24:553–559

    Article  PubMed  Google Scholar 

  • Whishaw IQ, Tomie J, Kolb B (1992) Ventrolateral prefrontal cortex lesions in rats impair the acquisition and retention of a tactile-olfactory configural task. Behav Neurosci 106:597–603

    Article  CAS  PubMed  Google Scholar 

  • Winocur G (1991) Functional dissociation of the hippocampus and prefrontal cortex in learning and memory. Psychobiology 19:11–20

    Google Scholar 

  • Winocur G, Eskes G (1998) Prefrontal cortex and caudate nucleus in conditional associative learning: dissociated effects of selective brain lesions in rats. Behav Neurosci 112:89–101

    Article  CAS  PubMed  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond P. Kesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kesner, R.P. (2016). Exploration of the Neurobiological Basis for a Three-System, Multiattribute Model of Memory. In: Clark, R.E., Martin, S. (eds) Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, vol 37. Springer, Cham. https://doi.org/10.1007/7854_2016_454

Download citation

Publish with us

Policies and ethics

Navigation