Importance of Soil Properties and Processes on Bioavailability of Organic Compounds

  • Chapter
  • First Online:
Bioavailability of Organic Chemicals in Soil and Sediment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 100))

  • 892 Accesses

Abstract

Soil properties and processes play an important role in determining the availability of organic contaminants to environmental receptors. In this chapter, we provide an overview of sorption processes, review soil properties that are key for understanding sorption, and examine the relationship between sorption and bioavailability to microorganisms, animals, and plants. Traditionally, contaminant-soil systems are assumed to be controlled by equilibrium-driven processes. We review these aspects but also include information about non-equilibrium soil processes such as high desorption resistance and receptor-facilitated bioavailability. Understanding the full breadth of soil processes that impact bioavailability is necessary for making accurate toxicological predictions and risk assessments. We conclude the chapter by recommending areas for future research that will help improve our understanding of these complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 353.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Linz DG, Nakles DV (eds) (1997) Environmentally acceptable endpoints in soil: risk-based approach to contaminated site management based on availability of chemicals in soil. American Academy of Environmental Engineers, Annapolis

    Google Scholar 

  2. Kuppusamy S, Venkateswarlu K, Megharaj M, Mayilswami S, Lee YB (2017) Risk-based remediation of polluted sites: a critical perspective. Chemosphere 186:607–615

    CAS  Google Scholar 

  3. Umeh AC, Duan LC, Naidu R, Semple KT (2017) Residual hydrophobic organic contaminants in soil: are they a barrier to risk-based approaches for managing contaminated land? Environ Int 98:18–34

    CAS  Google Scholar 

  4. Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Sci Total Environ 613–614:1140–1153

    Google Scholar 

  5. Ren XY, Zeng GM, Tang L, Wang JJ, Wan J, Liu YN et al (2018) Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610:1154–1163

    Google Scholar 

  6. Peijnenburg W, Capri E, Kula C, Liess M, Luttik R (2012) Evaluation of exposure metrics for effect assessment of soil invertebrates. Crit Rev Environ Sci Technol 42:1862–1893

    CAS  Google Scholar 

  7. Lal V, Peng C, Ng J (2015) A review of non-exhaustive chemical and bioavailability methods for the assessment of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 4:159–167

    Google Scholar 

  8. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, Oxford

    Google Scholar 

  9. Israelachvili JN (2011) Intermolecular and surface forces.3rd edn. Academic, Burlington

    Google Scholar 

  10. Delle SA (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data Monogr 30:187–439

    Google Scholar 

  11. Allen-King RM, Grathwohl P, Ball WP (2002) New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv Water Resour 25:985–1016

    CAS  Google Scholar 

  12. Manes M (1980) The Polanyi adsorption potential theory and its application to adsorption from water solution onto activated carbon. In: Suffet IH, McGuire MJ (eds) Activated carbon adsorption of organics from the aqueous phase, vol 1. Ann Arbor Science, Michigan, pp 43–63

    Google Scholar 

  13. Yang K, **ng BS (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008

    CAS  Google Scholar 

  14. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic, San Diego

    Google Scholar 

  15. Sander M, Pignatello JJ (2005) An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter. Environ Sci Technol 39:7476–7484

    CAS  Google Scholar 

  16. Sander M, Lu Y, Pignatello JJ (2006) Conditioning annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. Environ Sci Technol 40:170–178

    CAS  Google Scholar 

  17. Lu Y, Pignatello JJ (2002) Demonstration of the “conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4553–4561

    CAS  Google Scholar 

  18. Lu Y, Pignatello JJ (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ Sci Technol 38:5853–5862

    CAS  Google Scholar 

  19. Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    CAS  Google Scholar 

  20. Wells MJM, Stretz HA (2019) Supramolecular architectures of natural organic matter. Sci Total Environ 671:1125–1133

    CAS  Google Scholar 

  21. Lu Y, Pignatello JJ (2004) Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking. J Environ Qual 33:1314–1321

    CAS  Google Scholar 

  22. Pignatello JJ, **ng B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    CAS  Google Scholar 

  23. **ng B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799

    CAS  Google Scholar 

  24. Zhao D, Pignatello JJ, White JC, Braida W, Ferrandino F (2001) Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. Water Resour Res 37:2205–2212

    CAS  Google Scholar 

  25. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    CAS  Google Scholar 

  26. Cao X-Y, Pignatello JJ, Li Y, Chappell MA, Lattao C, Chen N et al (2012) Characterization of wood chars produced at different temperatures using advanced 13C-NMR spectroscopic techniques. Energy Fuel 26:5983–5991

    CAS  Google Scholar 

  27. Pignatello JJ, Uchimiya M, Abiven S, Schmidt MWI (2015) Evolution of biochar properties in soil. In: Lehmann J, Josephs S (eds) Biochar for environmental management. Earthscan, London, pp 195–234

    Google Scholar 

  28. Oen AMP, Beckingham B, Ghosh U, Kruså ME, Luthy RG, Hartnik T et al (2011) Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. Environ Sci Technol 46:810–817

    Google Scholar 

  29. McBride MB (1994) Environmental chemistry of soils. Oxford University Press

    Google Scholar 

  30. Ruby MV, Lowney YW, Bunge AL, Roberts SM, Gomez-Eyles JL, Ghosh U et al (2016) Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil—state of the science. Environ Sci Technol 50:2151–2164

    CAS  Google Scholar 

  31. Beriro DJ, Cave MR, Wragg J, Thomas R, Wills G, Evans F (2016) A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. J Hazard Mater 305:240–259

    CAS  Google Scholar 

  32. Cheng HF, Hu ED, Hu YA (2012) Impact of mineral micropores on transport and fate of organic contaminants: a review. J Contam Hydrol 129:80–90

    Google Scholar 

  33. Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York

    Google Scholar 

  34. **ao F, Pignatello JJ (2015) Interactions of triazine herbicides with biochar: steric and electronic effects. Water Res 80:179–188

    CAS  Google Scholar 

  35. Lattao C, Cao X, Mao J, Schmidt-Rohr K, Pignatello JJ (2014) Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environ Sci Technol 48:4790–4798

    CAS  Google Scholar 

  36. Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39:2033–2041

    CAS  Google Scholar 

  37. Duan L, Palanisami T, Liu Y, Dong Z, Mallavarapu M, Kuchel T et al (2014) Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environ Int 70:192–202

    CAS  Google Scholar 

  38. White JC, Quinones-Rivera A, Alexander M (1998) Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil. Environ Toxicol Chem 17:2378–2382

    CAS  Google Scholar 

  39. Carter LJ, Williams M, Martin S, Kamaludeen SPB, Kookana RS (2018) Sorption, plant uptake and metabolism of benzodiazepines. Sci Total Environ 628-629:18–25

    CAS  Google Scholar 

  40. Boesten JJTI (1993) Bioavailability of organic chemicals in soil related to their concentrations in the liquid phase: a review. Sci Total Environ 34:397–407

    Google Scholar 

  41. Hermens JLM, Heringa MB, Ter Laak TL (2007) Bioavailability in dose and exposure assessment of organic contaminants in (eco)toxicology. J Toxicol Environ Health A 70:727–730

    CAS  Google Scholar 

  42. Schwarzenbach RP, Gschwend PM, Imboden DM (2002) Environmental organic chemistry.2nd edn. Wiley, New York

    Google Scholar 

  43. Goss K-U, Schwarzenbach RP (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol 35:1–9

    CAS  Google Scholar 

  44. Niederer C, Goss K-U, Schwarzenbach RP (2006) Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid: experimental setup and experimental data. Environ Sci Technol 40:5368–5373

    CAS  Google Scholar 

  45. Niederer C, Goss K-U, Schwarzenbach RP (2006) Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid: modeling of experimental data. Environ Sci Technol 40:5374–5379

    CAS  Google Scholar 

  46. Nguyen TH, Goss K-U, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924

    CAS  Google Scholar 

  47. Escher BI, Schwarzenbach RP (1996) Partitioning of substituted phenols in liposome-water, biomembrane-water, and octanol-water systems. Environ Sci Technol 30:260–270

    CAS  Google Scholar 

  48. Gobas FAPC, Lahittete JM, Garofalo G, Shiu WY, Mackay D (1988) A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J Pharm Sci 77:265–272

    CAS  Google Scholar 

  49. Vaes WJJ, Ramos EU, Hamwijk C, van Holsteijn I, Blaauboer BJ, Seinen W et al (1997) Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem Res Toxicol 10:1067–1072

    CAS  Google Scholar 

  50. Patel H, Schultz TW, Cronin MTD (2002) Physico-chemical interpretation and prediction of the dimyristoyl phosphatidyl choline-water partition coefficient. J Mol Struct (THEOCHEM) 593:9–18

    CAS  Google Scholar 

  51. Kwon JH, Liljestrand HM, Katz LE (2006) Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles. Environ Toxicol Chem 25

    Google Scholar 

  52. Dulfer WJ, Govers HAJ (1995) Membrane-water partitioning of polychlorinated biphenyls in small unilamellar vesicles of four saturated phosphatidylcholines. Environ Sci Technol 29:2548–2554

    CAS  Google Scholar 

  53. Yamamoto H, Liljestrand HM (2004) Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: effects of lipid components. Environ Sci Technol 38:1139–1147

    CAS  Google Scholar 

  54. Pignatello JJ (2009) Bioavailability of contaminants in soil. In: Singh A (ed) Advances in applied bioremediation, vol 17: Soil biology. Springer, Berlin, pp 35–71

    Google Scholar 

  55. Droge STJD, Goss K-U (2013) Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals. Environ Sci Technol 47:14233–14241

    CAS  Google Scholar 

  56. Jolin WC, Sullivan J, Vasudevan D, Mackay AA (2016) Column chromatography to obtain organic cation sorption isotherms. Environ Sci Technol 50:8196–8204

    CAS  Google Scholar 

  57. Prosser RS, Trapp S, Sibley PK (2014) Modeling uptake of selected pharmaceuticals and personal care products into food crops from biosolids-amended soil. Environ Sci Technol 48:11397–11404

    CAS  Google Scholar 

  58. Trapp S (2009) Bioaccumulation of polar and Ionizable compounds in plants. In: Devillers J (ed) Ecotoxicology modeling. Emerging topics in ecotoxicology: principles, approaches and perspectives. Springer Science+Business Media, New York, pp 299–353

    Google Scholar 

  59. Pignatello JJ (1991) Competitive effects in the sorption of nonpolar organic compounds by soils. In: Baker RA (ed) Organic substances and sediments in water, vol 1: Humics and soils. Lewis Publishers, Chelsea, pp 291–307

    Google Scholar 

  60. **ng B, Gigliotti B, Pignatello JJ (1996) Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ Sci Technol 30:2432–2440

    CAS  Google Scholar 

  61. **ng B, Pignatello JJ (1998) Competitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter. Environ Sci Technol 32:614–619

    CAS  Google Scholar 

  62. White JC, Hunter M, Nam K, Pignatello JJ, Alexander M (1999) Correlation between the biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ Toxicol Chem 18:1720–1727

    CAS  Google Scholar 

  63. McGinley PM, Katz LE, Weber WJ Jr (1996) Competitive sorption and displacement of hydrophobic organic contaminants in saturated subsurface soil systems. Water Resour Res 32:3571–3577

    CAS  Google Scholar 

  64. McGinley PM, Katz LE, Weber WJ Jr (1993) A distributed reactivity model for sorption by soils and sediments. 2. Multicomponent systems and competitive effects. Environ Sci Technol 27:1524–1531

    CAS  Google Scholar 

  65. Zhao D, Hunter M, Pignatello JJ, White JC (2002) Application of the dual-mode model for predicting competitive sorption equilibria and rates of polycyclic aromatic hydrocarbons in estuarine sediment suspensions. Environ Toxicol Chem 21:2276–2282

    CAS  Google Scholar 

  66. Sander M, Pignatello JJ (2005) Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. Environ Sci Technol 39:1606–1615

    CAS  Google Scholar 

  67. Li X, Gamiz B, Wang Y, Pignatello JJ, **ng B (2015) Competitive sorption used to probe strong hydrogen bonding sites for weak organic acids on carbon nanotubes. Environ Sci Technol 49:1409–1417

    CAS  Google Scholar 

  68. Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40:7757–7763

    CAS  Google Scholar 

  69. Crittenden JC, Luft P, Hand DW, Oravitz JL, Loper SW, Arl M (1985) Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory. Environ Sci Technol 19:1037–1043

    Google Scholar 

  70. Radke CJ, Prausnitz JM (1972) Thermodynamics of multi-solute adsorption from dilute liquid solutions. AICHE J 18:761–768

    CAS  Google Scholar 

  71. Stroud JL, Paton GI, Semple KT (2009) Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere 74:563–567

    CAS  Google Scholar 

  72. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    CAS  Google Scholar 

  73. Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of α-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24:1349–1354

    CAS  Google Scholar 

  74. Braida W, White JL, Pignatello JJ (2004) Indices for bioavailability and biotransformation potential of contaminants in soils. Environ Toxicol Chem 23:1585–1591

    CAS  Google Scholar 

  75. Guibal R, Buzier R, Lissalde S, Guibaud G (2019) Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: an overview of o-DGT passive samplers. Sci Total Environ 693:133537

    CAS  Google Scholar 

  76. Li C, Ding SM, Yang LY, Wang Y, Ren MY, Chen MS et al (2019) Diffusive gradients in thin films: devices, materials and applications. Environ Chem Lett 17:801–831

    CAS  Google Scholar 

  77. Davison W, Zhang H (2012) Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ Chem 9:1–13

    CAS  Google Scholar 

  78. Haws NW, Ball WP, Bouwer EJ (2006) Modeling and interpreting bioavailability of organic contaminant mixtures in subsurface environments. J Contam Hydrol 82:255–292

    CAS  Google Scholar 

  79. Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv Agron 69:1–73

    CAS  Google Scholar 

  80. Crank J (1975) The mathematics of diffusion.2nd edn. Clarendon Press, Oxford

    Google Scholar 

  81. Kleineidam S, Rügner H, Grathwohl P (1999) The impact of grain scale heterogeneity on slow sorption kinetics. Environ Toxicol Chem 18:1673–1678

    CAS  Google Scholar 

  82. Pignatello JJ, Mitch WA, Xu W (2017) Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds. Environ Sci Technol 51:8893–8908

    CAS  Google Scholar 

  83. Chang M, Wu S, Chen C (1997) Diffusion of volatile organic compounds in pressed humic acid disks. Environ Sci Technol 31:2307–2312

    CAS  Google Scholar 

  84. Pignatello JJ (2012) Dynamic interactions of natural organic matter and organic compounds. J Soil Sediment 12:1241–1256

    CAS  Google Scholar 

  85. White JC, Pignatello JJ (1999) Influence of biosolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 33:4292–4298

    CAS  Google Scholar 

  86. Brusseau ML, Rao PSC (1989) Sorption nonideality during organic contaminant transport in porous media. Crit Rev Environ Control 19:33–99

    CAS  Google Scholar 

  87. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ et al (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    CAS  Google Scholar 

  88. Pignatello JJ (1990) Slowly reversible sorption of aliphatic halocarbons in soils. II. Mechanistic aspects. Environ Toxicol Chem 9:1117–1126

    CAS  Google Scholar 

  89. Hawthorne SB, Miller DJ (2003) Evidence for very tight sequestration of BTEX compounds in manufactured gas plant soils based on selective supercritical fluid extraction and soil/water partitioning. Environ Sci Technol 37:3587–3594

    CAS  Google Scholar 

  90. Pavlostathis SG, Jaglal K (1991) Desorptive behavior of trichloroethylene in contaminated soil. Environ Sci Technol 25:274–279

    CAS  Google Scholar 

  91. Pavlostathis SG, Mathavan GN (1992) Desorption kinetics of selected volatile organic compounds from field contaminated soils. Environ Sci Technol 26:532–538

    CAS  Google Scholar 

  92. Pignatello JJ (1990) Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions. Environ Toxicol Chem 9:1107–1115

    CAS  Google Scholar 

  93. Kommalapati RR, Valsaraj KT, Constant WD (2002) Soil-water partitioning and desorption hysteresis of volatile organic compounds from a Louisiana superfund site soil. Environ Monit Assess 73:275–290

    CAS  Google Scholar 

  94. Werth CJ, Hansen KM (2002) Modeling the effects of concentration history on the slow desorption of trichloroethene from a soil at 100% relative humidity. J Contam Hydrol 54:307–327

    CAS  Google Scholar 

  95. Farrell J, Grassian D, Jones M (1999) Investigation of mechanisms contributing to slow desorption of hydrophobic compounds from mineral solids. Environ Sci Technol 33:1237–1243

    CAS  Google Scholar 

  96. Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1208

    CAS  Google Scholar 

  97. Wang J, Taylor A, Schlenk D, Gan J (2018) Application and validation of isotope dilution method (IDM) for predicting bioavailability of hydrophobic organic contaminants in soil. Environ Pollut 236:871–877

    CAS  Google Scholar 

  98. Wang J, Schlenk D, Gan J (2019) A direct method for quantifying the effects of aging on the bioavailability of legacy contaminants in soil and sediment. Environ Sci Technol Lett 6:148–152

    CAS  Google Scholar 

  99. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry.2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  100. Yang J, Pignatello JJ, Pan B, **ng B (2017) Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the solids. Environ Sci Technol 51:8972–8980

    CAS  Google Scholar 

  101. Gianfreda L, Iamarino G, Scelza R, Rao MA (2006) Oxidative catalysts for the transformation of phenolic pollutants: a brief review. Biocatal Biotransformation 24:177–187

    CAS  Google Scholar 

  102. Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Google Scholar 

  103. Kastner M, Nowak KM, Miltner A, Trapp S, Schaffer A (2014) Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil – a synthesis. Crit Rev Environ Sci Technol 44:2107–2171

    Google Scholar 

  104. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    CAS  Google Scholar 

  105. Smedley JM, Williams A, Bartle KD (1992) A mechanism for the formation of soot particles and soot deposits. Combust Flame 91:71–82

    CAS  Google Scholar 

  106. Harmon TC, Burks GA, Aycaguer A-C, Jackson K (2001) Thermally enhanced vapor extraction for removing PAHs from lampblack-contaminated soil. J Environ Eng 127:986–993

    CAS  Google Scholar 

  107. Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. Environ Sci Technol 39:7885–7895

    Google Scholar 

  108. Jonker MT, Koelmans AA (2002) Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism. Environ Sci Technol 36:4107–4113

    CAS  Google Scholar 

  109. Braida W, Pignatello JJ, Lu Y, Ravikovitch PI, Neimark AV, **ng B (2003) Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol 37:409–417

    CAS  Google Scholar 

  110. Akhter M, Chughtai A, Smith D (1985) The structure of hexane soot I: spectroscopic studies. Appl Spectrosc 39:143–153

    CAS  Google Scholar 

  111. Razouk R, Saleeb E, Said E (1968) The heat of wetting and immersional swelling of charcoal. J Colloid Interface Sci 28:487–492

    CAS  Google Scholar 

  112. Weber WJ Jr, Kim SH, Johnson MD (2002) Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption. Environ Sci Technol 36:3625–3634

    CAS  Google Scholar 

  113. Sander M, Pignatello JJ (2009) Sorption irreversibility of 1,4-dichlorobenzene in two natural organic matter rich geosorbents. Environ Toxicol Chem 28:447–457

    CAS  Google Scholar 

  114. Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717

    CAS  Google Scholar 

  115. Loehr RC, Webster MT (1997) In: Linz DG, Nakles DV (eds) Environmentally acceptable endpoints in soil. American Academy of Environmental Engineers, Annapolis, pp 137–386

    Google Scholar 

  116. Cornelissen G, Hassell KA, van Noort PCM, Kraaij R, van Ekeren PJ, Dijkema C et al (2000) Slow desorption of PCBs and chlorobenzenes from soils and sediments: relations with sorbent and sorbate characteristics. Environ Pollut 108:69–80

    CAS  Google Scholar 

  117. Lei L, Suidan MT, Khodadoust AP, Tabak HH (2004) Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption. Environ Sci Technol 38:1786–1793

    CAS  Google Scholar 

  118. Li J, Pignatello JJ, Smets BF, Grasso D, Monserrate E (2005) Bench-scale evaluation of in situ bioremediation strategies for soil at a former manufactured gas plant site. Environ Toxicol Chem 24:741–749

    CAS  Google Scholar 

  119. Pignatello JJ (2006) Fundamental issues in sorption related to physical and biological remediation of soils. Soil and water pollution monitoring, protection and remediation. Springer, pp 3–23

    Google Scholar 

  120. Kraaij R, Mayer P, Busser FJM, Bolscher MVH, Seinen W, Tolls J (2003) Measured pore water concentrations make equilibrium partitioning work: a data analysis. Environ Sci Technol 37:268–274

    CAS  Google Scholar 

  121. Wilson SC, Naidu R (2008) Organic contaminant speciation and bioavailability in the terrestrial environment. In: Naidu R (ed) Chemical bioavailability in terrestrial environments, vol 32: Developments in soil science, pp 187-229

    Google Scholar 

  122. Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176

    CAS  Google Scholar 

  123. Cui X-Y, **ang P, He R-W, Juhasz A, Ma LQ (2016) Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere 150:378–389

    CAS  Google Scholar 

  124. Zhang Y, Pignatello JJ, Tao S (2016) Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink. Environ Pollut 218:901–908

    CAS  Google Scholar 

  125. Zhang Y, Pignatello JJ, Tao S (2018) Bioaccessibility of PAHs and PAH derivatives in a fuel soot assessed by an in vitro digestive model with absorptive sink: effects of aging the soot in a soil-water mixture. Sci Total Environ 615:169–176

    CAS  Google Scholar 

  126. Zhang Y, Pignatello JJ, Tao S, **ng B (2015) Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink: effect of food ingestion. Environ Sci Technol 49:14641–14648

    CAS  Google Scholar 

  127. Zhang Y, Pignatello JJ, Tao S, **ng B (2015) Bioaccessibility of PAHs in fuel soot assessed by an in vitro gastrointestinal model: effect of including an absorptive sink. Environ Sci Technol 49:3905–3912

    CAS  Google Scholar 

  128. Lamshoeft M, Gao Z, Resseler H, Schriever C, Sur R, Sweeney P et al (2018) Evaluation of a novel test design to determine uptake of chemicals by plant roots. Sci Total Environ 613-614:10–19

    CAS  Google Scholar 

  129. Nason SL, Miller EL, Karthikeyan KG, Pedersen J (2019) Effects of binary mixtures and transpiration on accumulation of pharmaceuticals by spinach. Environ Sci Technol 53:4850–4859

    CAS  Google Scholar 

  130. Miller EL, Nason SL, Karthikeyan KG, Pedersen JA (2016) Root uptake of pharmaceutical and personal care product ingredients. Environ Sci Technol 50:525–541

    CAS  Google Scholar 

  131. Karlsson MV, Marshall S, Gouin T, Boxall ABA (2016) Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms. Environ Toxicol Chem 35:836–842

    CAS  Google Scholar 

  132. Raffy G, Mercier F, Glorennec P, Mandin C, Le Bot B (2018) Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: a review of measurement methods, data and influencing factors. J Hazard Mater 352:215–227

    CAS  Google Scholar 

  133. James K, Peters RE, Laird BD, Ma WK, Wickstrom M, Stephenson GL et al (2011) Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro digestors and the juvenile swine model. Environ Sci Technol 45:4586–4593

    CAS  Google Scholar 

  134. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  Google Scholar 

  135. Wicke D, Bockelmann U, Reemtsma T (2008) Environmental influences on the partitioning and diffusion of hydrophobic organic contaminants in microbial biofilms. Environ Sci Technol 42:1990–1996

    CAS  Google Scholar 

  136. Wicke D, Bockelmann U, Reemtsma T (2007) Experimental and modeling approach to study sorption of dissolved hydrophobic organic contaminants to microbial biofilms. Water Res 41:2202–2210

    CAS  Google Scholar 

  137. Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    CAS  Google Scholar 

  138. Zhao G, Huang QY, Rong XM, Cai P, Liang W, Dai K (2014) Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation. Biodegradation 25:1–9

    Google Scholar 

  139. Sarkar B, ** Y, Megharaj M, Krishnamurti GSR, Bowman M (2012) Bioreactive organoclay: a new technology for environmental remediation. Crit Rev Environ Sci Technol 42:435–488

    CAS  Google Scholar 

  140. Marschner H, Römheld V (1986) Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z Pflanzenernähr Bodenkd 149:441–456

    CAS  Google Scholar 

  141. Neumann G, Römheld V (2012) Rhizosphere chemistry in relation to plant nutrition. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, Waltham, pp 347–368

    Google Scholar 

  142. Lin L, Wong H (2017) Predicting oral drug absorption: mini review on physiologically-based pharmacokinetic models. Pharmaceutics 9:41

    Google Scholar 

  143. Nason SL, Miller EL, Karthikeyan KG, Pedersen JA (2018) Plant-induced changes to rhizosphere pH impact leaf accumulation of lamotrigine but not carbamazepine. Environ Sci Technol Lett 5:377–381

    CAS  Google Scholar 

  144. Zhu D, Hyun S, Pignatello JJ, Lee LS (2004) Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter. Environ Sci Technol 38:4361–4368

    CAS  Google Scholar 

  145. Subramaniam K, Stepp C, Pignatello JJ, Smets BF, Grasso D (2004) Enhancement of polynuclear aromatic hydrocarbon desorption by complexing agents in a weathered soil. Environ Eng Sci 21:515–523

    CAS  Google Scholar 

  146. Yang Y, Ratte D, Smets BF, Pignatello JJ, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021

    CAS  Google Scholar 

  147. White JC, Wang X, Gent MPN, Iannucci-Berger W, Eitzer BD, Schultes NP et al (2003) Subspecies-level variation in the phytoextraction of weathered p,p′-DDE by Cucurbita pepo. Environ Sci Technol 37:4368–4373

    CAS  Google Scholar 

  148. Lefevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol 47:11545–11553

    CAS  Google Scholar 

  149. Ren X, Wang F, Cao F, Guo J, Sun H (2018) Desorption of atrazine in biochar-amended soils: effects of root exudates and the aging interactions between biochar and soil. Chemosphere 212:687–693

    CAS  Google Scholar 

  150. Jia H, Hou D, Dai M, Lu H, Yan C (2018) Effects of root exudates on the mobility of pyrene in mangrove sediment-water system. Catena 162:396–401

    CAS  Google Scholar 

  151. Gao Y, Wang N, Li H, Hu X, Goikavi C (2014) Low-molecular-weight organic acids influence the sorption of phenanthrene by different soil particle size fractions. J Environ Qual 44:219–227

    Google Scholar 

  152. Sun B, Lian F, Bao Q, Liu Z, Song Z, Zhu L (2016) Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole. Environ Pollut 214:142–148

    CAS  Google Scholar 

  153. Huang H, Wang S, Lv J, Xu X, Zhang S (2016) Influences of artificial root exudate components on the behaviors of BDE-28 and BDE-47 in soils: desorption, availability, and biodegradation. Environ Sci Pollut Res 23:7702–7711

    Google Scholar 

  154. Oburger E, Jones DL (2018) Sampling root exudates – mission impossible? Rhizosphere 6:116–133

    Google Scholar 

  155. Fu QL, Blaney L, Zhou DM (2018) Identifying plant stress responses to roxarsone in soybean root exudates: new insights from two-dimensional correlation spectroscopy. J Agric Food Chem 66:53–62

    CAS  Google Scholar 

  156. Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P et al (2019) Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). Sci Total Environ 646:212–219

    CAS  Google Scholar 

  157. Martinez-Haro M, Taggart MA, Green AJ, Mateo R (2009) Avian digestive tract simulation to study the effect of grit geochemistry and food on Pb shot bioaccessibility. Environ Sci Technol 43:9480–9486

    CAS  Google Scholar 

  158. Mao XH, Jiang R, **ao W, Yu JG (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    CAS  Google Scholar 

  159. Shreve GS, Inguva S, Gunnan S (1995) Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotechnol 4:331–337

    CAS  Google Scholar 

  160. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  Google Scholar 

  161. Guha S, Jaffé P (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391

    CAS  Google Scholar 

  162. Guha S, Jaffé PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32:2317–2324

    CAS  Google Scholar 

  163. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  Google Scholar 

  164. Seo Y, Bishop PL (2007) Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environ Sci Technol 41:7107–7113

    CAS  Google Scholar 

  165. Johnson JC, Sun S, Jaffe PR (1999) Surfactant enhanced perchloroethylene dissolution in porous media: the effect on mass transfer rate coefficients. Environ Sci Technol 33:1286–1292

    CAS  Google Scholar 

  166. Huang HL, Lee WMG (2001) Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration. Chemosphere 44:963–972

    CAS  Google Scholar 

  167. Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Water Res 33:351–360

    CAS  Google Scholar 

  168. Bernardez LA, Ghoshal S (2008) Solubilization kinetics for polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to non-ionic surfactant solutions. J Colloid Interface Sci 320:298–306

    CAS  Google Scholar 

  169. Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27

    CAS  Google Scholar 

  170. Wick LY, Colangelo T, Harms H (2002) Kinetics of mass-transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    Google Scholar 

  171. Kappeli O, Fiechter A (1977) Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131:917–921

    CAS  Google Scholar 

  172. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    CAS  Google Scholar 

  173. Kaczorek E, Pacholak A, Zdarta A, Smulek W (2018) The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids Interface 2:35

    Google Scholar 

  174. Tao S, Li L, Ding JN, Zhong JJ, Zhang DY, Lu Y et al (2011) Mobilization of soil-bound residue of organochlorine pesticides and polycyclic aromatic hydrocarbons in an in vitro gastrointestinal model. Environ Sci Technol 45:1127–1132

    CAS  Google Scholar 

  175. ** J, Chen L, Yang D, Pang Y-P, Zhang S-H, Yu Y et al (2012) Polycyclic aromatic hydrocarbons in animal-based foods from Shanghai: bioaccessibility and dietary exposure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:1465–1474

    Google Scholar 

  176. Mazer NA, Benedek GB, Carey MC (1980) Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry 19:601–615

    CAS  Google Scholar 

  177. Laher JM, Barrowman JA (1983) Polycyclic hydrocarbon and polychlorinated biphenyl solubilization in aqueous solutions of mixed micelles. Lipids 18:216–222

    CAS  Google Scholar 

  178. Dulfer WJ, Groten JP, Govers HAJ (1996) Effect of fatty acids and the aqueous diffusion barrier on the uptake and transport of polychlorinated biphenyls in Caco-2 cells. J Lipid Res 37:950–961

    CAS  Google Scholar 

  179. Wei W, Bonvallot N, Gustafsson A, Raffy G, Glorennec P (2018) Bioaccessibility and bioavailability of environmental semi-volatile organic compounds via inhalation: a review of methods and models. Environ Int 113:202–213

    CAS  Google Scholar 

  180. Liu X, Ji R, Shi Y, Wang F, Chen W (2019) Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: implications for bioavailability and risks of airborne aromatics. Sci Total Environ 655:1159–1168

    CAS  Google Scholar 

  181. Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    CAS  Google Scholar 

  182. Wiseman CLS (2015) Analytical methods for assessing metal bioaccessibility in airborne particulate matter: a sco** review. Anal Chim Acta 877:9–18

    CAS  Google Scholar 

  183. Spalt EW, Kissel JC, Shirai JH, Bunge AL (2009) Dermal absorption of environmental contaminants from soil and sediment: a critical review. J Expo Sci Environ Epidemiol 19:119–148

    CAS  Google Scholar 

  184. Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    CAS  Google Scholar 

  185. Crocker FH, Guerin WF, Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ Sci Technol 29:2953–2958

    CAS  Google Scholar 

  186. Park J-H, Zhao X, Voice TC (2001) Biodegradation of non-desorbable naphthalene in soils. Environ Sci Technol 35:2734–2740

    CAS  Google Scholar 

  187. Reid B, MacLeod CJA, Lee PH, Morriss AWJ, Stokes JD, Semple KT (2001) A simple C14-respirometric method for assessing microbial catabolic potential and catabolic activity. FEMS Microbiol Lett 196:141–146

    CAS  Google Scholar 

  188. Singh N, Sethunathan N, Megharaj M, Naidu R (2008) Bioavailability of sorbed pesticides to bacteria: an overview. In: Naidu R (ed) Chemical bioavailability in terrestrial environments, vol 32: Developments in soil science. Elsevier, pp 73–82

    Google Scholar 

  189. Yang YR, McCarty PL (2000) Biologically enhanced dissolution of tetrachloroethene DNAPL. Environ Sci Technol 34:2979–2984

    CAS  Google Scholar 

  190. Seagren EA, Rittmann BE, Valocchi AJ (2002) Bioenhancement of NAPL pool dissolution: experimental evaluation. J Contam Hydrol 55:57–85

    CAS  Google Scholar 

  191. Singh N (2003) Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J Agric Food Chem 51:2653–2658

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Pignatello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pignatello, J.J., Nason, S.L. (2020). Importance of Soil Properties and Processes on Bioavailability of Organic Compounds. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_510

Download citation

Publish with us

Policies and ethics

Navigation