Physicochemical and Bacteriological Quality of Surface Water Resources Receiving Common Wastewater Effluents in Drylands of Algeria

  • Chapter
  • First Online:
Water Resources in Algeria - Part II

Abstract

The assessment of water quality and pollution of surface water resources is crucial to maintain the integrity of aquatic environments. This study aims at characterizing water physicochemical and bacteriological quality of Wadis of Biskra (northeastern Algeria). Water samples were collected monthly from three different Wadis receiving common wastewater effluents from the city of Biskra. Using standard methods, each sample underwent several analyses to determine physicochemical parameters (temperature, pH, electrical conductivity, turbidity, biological and chemical oxygen demand “BOD5 and COD”, and concentrations of suspended solid materials, dissolved oxygen, phosphate, nitrites, nitrates, and ammoniacal nitrogen) and bacterial quality (total coliforms, faecal coliforms, faecal streptococci, and sulfite-reducing Clostridia). Most of the measured physicochemical parameters reached unsuitable quality limits according to FAO and WHO standards. The water of Wadis of Biskra are characterized by slightly alkaline water pH (7–7.79), electrical conductivity >1,500 μS/cm, turbidity >5 FTU, very low level of suspended solid materials (1–1.33 mg/L), dissolved oxygen <5–8 mg/L, phosphates >2 mg/L, BOD5 > 5 mg/L, COD >30 mg/L, nitrite >0.1 mg/L, and NH3–N > 0.5 mg/L. Our findings emphasized the high contamination load of bacterial groups studied that exceeded WHO standards: total coliforms (56,917–76,167 CFU/100 mL), faecal coliforms (457–6,100 CFU/100 mL), faecal streptococci (1,432–5,217 CFU/100 mL), and sulfite-reducing Clostridia (886–5,217 CFU/100 mL). These results revealed a significant faecal pollution in the water of study Wadis. The spatiotemporal trend of different physicochemical and bacterial parameters, as well as the relationships between bacteria densities and physicochemical parameters were tested and discussed. The discharge of untreated wastewater into natural Wadis of drylands results in high and potential pollution risk with serious health and environmental issues. Therefore, the appropriate water treatment prior to wastewater discharge is needed urgently to prevent aquatic ecosystem pollution and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 239.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BOD5:

5-Day biological oxygen demand

CFU:

Colony-forming unit

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

EC:

Electrical conductivity

FC:

Faecal coliforms

FS:

Faecal streptococci

GLM:

Generalized linear model

MPN:

Most probable number

SD:

Standard deviation

SRC:

Sulfite-reducing Clostridia

SSM:

Suspended solid material

TC:

Total coliforms

WBK:

Wadi of Biskra

WHO:

World Health Organization

WRB:

Wadi of Chaabet Roba

WZM:

Wadi of Zemer

References

  1. Rockström J, Falkenmark M (2015) Agriculture: increase water harvesting in Africa. Nat News 519(7543):283. https://doi.org/10.1038/519283a

    Article  CAS  Google Scholar 

  2. WWAP (United Nations World Water Assessment Programme) (2015) The United Nations world water development report 2015: water for a sustainable world. UNESCO, Paris

    Google Scholar 

  3. Nelliyat P (2016) Water pollution: extent, impact, and abatement. In: Narain V, Narayanamoorthy A (eds) Indian water policy at the crossroads: resources, technology and reforms. Global issues in water policy, vol 16. Springer, Cham, pp 131–151. https://doi.org/10.1007/978-3-319-25184-4_8

    Chapter  Google Scholar 

  4. Kostyla C, Bain R, Cronk R, Bartram J (2015) Seasonal variation of fecal contamination in drinking water sources in develo** countries: a systematic review. Sci Total Environ 514:333–343. https://doi.org/10.1016/j.scitotenv.2015.01.018

    Article  CAS  Google Scholar 

  5. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ et al (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15. https://doi.org/10.1016/j.envint.2014.12.010

    Article  CAS  Google Scholar 

  6. Jayaswal K, Sahu V, Gurjar BR (2018) Water pollution, human health and remediation. In: Bhattacharya S, Gupta A, Gupta A, Pandey A (eds) Water remediation. Energy, environment, and sustainability. Springer, Singapore, pp 11–27. https://doi.org/10.1007/978-981-10-7551-3_2

    Chapter  Google Scholar 

  7. Attoui B, Toumi N, Messaoudi S, Benrabah S (2016) Degradation of water quality: the case of plain west of Annaba (Northeast Algeria). J Water Land Dev 31(1):3–10. https://doi.org/10.1515/jwld-2016-0031

    Article  CAS  Google Scholar 

  8. Colin N, Maceda-Veiga A, Flor-Arnau N, Mora J, Fortuño P, Vieira C et al (2016) Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry. Ecotoxicol Environ Safe 132:295–303. https://doi.org/10.1016/j.ecoenv.2016.06.017

    Article  CAS  Google Scholar 

  9. Ouali N, Belabed BE, Chenchouni H (2018) Modelling environment contamination with heavy metals in flathead grey mullet Mugil cephalus and upper sediments from north African coasts of the Mediterranean Sea. Sci Total Environ 639:156–174. https://doi.org/10.1016/j.scitotenv.2018.04.377

    Article  CAS  Google Scholar 

  10. Belabed BE, Meddour A, Samraoui B, Chenchouni H (2017) Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa. Environ Monit Assess 189(6):265. https://doi.org/10.1007/s10661-017-5968-5

    Article  CAS  Google Scholar 

  11. Mateo-Sagasta J, Zadeh SM, Turral H (eds) (2018) More people, more food, worse water?: a global review of water pollution from agriculture. FAO and International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE), Rome and Colombo. www.fao.org/3/ca0146en/ca0146en.pdf

    Google Scholar 

  12. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  13. Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4(1):51. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  14. Kumar D, Singh A, Jha RK, Sahoo BB, Sahoo SK, Jha V (2019) Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain, India. Arab J Geosci 12(11):339. https://doi.org/10.1007/s12517-019-4519-5

    Article  CAS  Google Scholar 

  15. Wen Y, Schoups G, Van De Giesen N (2017) Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci Rep 7:43289. https://doi.org/10.1038/srep43289

    Article  CAS  Google Scholar 

  16. Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean J Environ Integr 3(1):25. https://doi.org/10.1007/s41207-018-0067-8

    Article  Google Scholar 

  17. Oustani M, Halilat MT, Chenchouni H (2015) Effect of poultry manure on the yield and nutriments uptake of potato under saline conditions of arid regions. Emirates J Food Agric 27:106–120. https://doi.org/10.9755/ejfa.v27i1.17971

    Article  Google Scholar 

  18. Fellah S, Khiari A, Kribaa M, Arar A, Chenchouni H (2018) Effect of water regime on growth performance of durum wheat (Triticum Durum Desf.) during different vegetative phases. Irrig Drain 67(5):762–778. https://doi.org/10.1002/ird.2289

    Article  Google Scholar 

  19. Bouaroudj S, Menad A, Bounamous A, Ali-Khodja H, Gherib A, Weigel DE, Chenchouni H (2019) Assessment of water quality at the largest dam in Algeria (Beni Haroun dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 219:76–88. https://doi.org/10.1016/j.chemosphere.2018.11.193

    Article  CAS  Google Scholar 

  20. Boudjabi S, Kribaa M, Chenchouni H (2019) Sewage sludge fertilization alleviates drought stress and improves physiological adaptation and yield performances in durum wheat (Triticum durum): a double-edged sword. J King Saud Univ Sci 31(3):336–344. https://doi.org/10.1016/j.jksus.2017.12.012

    Article  Google Scholar 

  21. Belhouchet N, Hamdi B, Chenchouni H, Bessekhouad Y (2019) Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J Photochem. Photobiol A Chem 372:196–205. https://doi.org/10.1016/j.jphotochem.2018.12.016

    Article  CAS  Google Scholar 

  22. Steele M, Odumeru J (2004) Irrigation water as source of foodborne pathogens on fruit and vegetables. J Food Protect 67(12):2839–2849. https://doi.org/10.4315/0362-028X-67.12.2839

    Article  Google Scholar 

  23. Rodier J, Legube B, Merlet N (2009) L’analyse de l’eau9th edn. Dunod, Paris

    Google Scholar 

  24. Mihi A, Tarai N, Chenchouni H (2019) Can palm date plantations and ossification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands? Ecol Indic 105:365–375. https://doi.org/10.1016/j.ecolind.2017.11.027

    Article  Google Scholar 

  25. Potelon JL, Zysman K (1998) Le guide des analyses de l’eau potable. La Lettre du Cadre Territorial, Voiron

    Google Scholar 

  26. Lebres EA, Mouffok F (2008) Le cours national d'hygiène et de microbiologie des eaux de boisson. Laboratoires bactériologiques alimentaires et des eaux. Institut of Pasteur of Algeria, Algiers

    Google Scholar 

  27. Bartram J, Ballance R, World Health Organization (1996) Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programs. UNEP/WHO, Geneva. www.who.int/water_sanitation_health/resourcesquality/wqmchap10.pdf

    Book  Google Scholar 

  28. Taiyun W, Viliam S (2016) Corrplot: visualization of a correlation matrix. R package version 0.77. https://cran.R-project.org/package=corrplot

  29. Hiraishi A, Saheki K, Horie S (1984) Relationship of total coliform, faecal coliform and organic pollution levels in Tamagawa river. Bull Jpn Soc Sci Fish 50(6):991–997

    Article  Google Scholar 

  30. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.r-project.org

    Google Scholar 

  31. EPA (Environmental Protection Agency) (1999) 25 Years of the safe drinking water act: history and trends (816-R-99-007)

    Google Scholar 

  32. Hacioglu N, Dulger B (2009) Monthly variation of some physico-chemical and microbiological parameters in Biga stream (Biga, Canakkale, Turkey). Afr J Biotechnol 8(9):1929–1937

    CAS  Google Scholar 

  33. Ahipathy MV, Puttaiah ET (2006) Ecological characteristics of Vrishabhavathy River in Bangalore (India). Environ Geol 49(8):1217–1222. https://doi.org/10.1007/s00254-005-0166-0

    Article  CAS  Google Scholar 

  34. WHO (World Health Organization) (1987) Global pollution and health results of related environmental monitoring. Global environment monitoring system. WHO/UNEP, Geneva

    Google Scholar 

  35. Kumar A, Gupta HP, Singh DK (1996) Impact of sewage pollution on chemistry and primary productivity of two fresh water bodies in Santal Paragana (Bihar) India. J Ecol 23(2):82–86

    Google Scholar 

  36. Kumar A, Bisht BS, Joshi VD, Singh AK, Talwar A (2010) Physical, chemical and bacteriological study of water from rivers of Uttarakhand. J Hum Ecol 32(3):169–173

    Article  Google Scholar 

  37. Bengherbia A, Hamaidi F, Zahraoui R, Hamaidi MS, Megateli S (2014) Impact des rejets des eaux usées sur la qualité physico-chimique et bactériologique de l’Oued Beni Aza (Blida, Algérie). Leban Sci J 15(2):39–51

    CAS  Google Scholar 

  38. Mutlu E, Uncumusaoğlu AA (2016) Physicochemical analysis of water quality of Brook Kuruçay. Turk J Agric Food Sci Tech 4(11):991–998. https://doi.org/10.24925/turjaf.v4i11.991-998.946

    Article  Google Scholar 

  39. WHO (World Health Organization) (2011) World Health Organization-guidelines for drinking water quality. Recommendations. 4th edn, WHO, Geneva. www.hcsc.gc.ca/ehp/dhm/catalogue/dpc_pubs/rqepdoc_appui/nitrate.pdf

    Google Scholar 

  40. Khan RM, Jadhav MJ, Ustad IR (2012) Physicochemical analysis of Triveni Lake water of Amravati District in (MS) India. Biosci Discov 3(1):64–66

    Google Scholar 

  41. Silva AMM, Sacomani LB (2001) Using chemical and physical parameters to define the quality of pardo river water (Botucatu-Sp-Brasil). Tech Note Water Resour 35(6):1609–1616. https://doi.org/10.1016/S0043-1354(00)00415-2

    Article  Google Scholar 

  42. Begum A, Rai H (2008) Study on the quality of water in some streams of Cauvery River. J Chem 5(2):377–384. https://doi.org/10.1155/2008/234563

    Article  CAS  Google Scholar 

  43. ABH (2004) Le Bassin du Kébir-Rhumel. Les Cahiers de l’Agence N°12. Agence de bassin hydrographique constantinois-seybouse-mellegue. Ministry of Water Resources, Algiers

    Google Scholar 

  44. QAE (2011) La qualité et les analyses de l’eau. Action contre la faim, publié par Saidou Gayet, p 40

    Google Scholar 

  45. Boeglin JC (2009) Contrôle des Eaux Douces et de Consommation Humaine. Techniques Ingénieur, Paris, pp 2–8

    Google Scholar 

  46. Crini G, Badot PM (2007) Traitement et épuration des eaux industrielles polluées. Presses Universitaires de Franche-Comté, Besançon

    Google Scholar 

  47. Afri-Mehennaoui FZ (1998) Contribution à l’étude physico-chimique et biologique de l’Oued Kébir-Rhumel et de ses principaux affluents. Magister dissertation, University of Constantine

    Google Scholar 

  48. Mabrouki Y, Taybi AF, Bensaad H, Berrahou A (2016) Spatiotemporal variability in the quality of running waters of the Oued Za (Eastern Morocco). J Mater Environ Sci 7(1):231–243

    CAS  Google Scholar 

  49. Derwich E, Beziane Z, Benaabidate L, Belghyti D (2008) Evaluation de la qualité des eaux de surface des Oueds Fès et Sebou utilisées en agriculture maraîchère au Maroc. Lahryss J 7:58–77

    Google Scholar 

  50. Krishnan RR, Dharmaraj K, Kumari BR (2007) A comparative study on the physicochemical and bacterial analysis of drinking, borewell and sewage water in the three different places of Sivakasi. J Environ Biol 28(1):105–108

    CAS  Google Scholar 

  51. Voznaya NF (1983) Chemistry of water and microbiology, Mir publishers, Moscow quality of domestic water supplies, assessment guide 12nd edition. Department of Water Affairs and Forestry, Department of Health and Water Research Commission

    Google Scholar 

  52. Festy B, Hartamann P, Ledrans M, Levallois P, Payment P, Tricard D (2003) Qualité de l’eau. Edition Tec & Doc, Paris

    Google Scholar 

  53. Squilbin M, Villers J, Yourassowsky C (2005) Qualité physico-chimique et chimique des eaux de surface: cadre général Institut Bruxellois pour la Gestion de l’Environnement. Observatoire des Données de l’Environnement, 16

    Google Scholar 

  54. Bousseboua H (2002) Microbiologie générale. University of Constantine, Constantine, Algeria

    Google Scholar 

  55. Chenchouni H (2010) Diagnostic écologique et évaluation du patrimoine biologique du Lac Ayata (La Vallée de l’Oued Righ: Sahara septentrional algérien). Magiter dissertation, University of Ouargla, Ouargla, Algeria

    Google Scholar 

  56. McCarty PL, Sawyer CN, Parkin GF (2003) Chemistry for environmental engineering and science5th edn. McGraw-Hill, New York, pp 625–630

    Google Scholar 

  57. Igbinosa EO, Okoh AI (2009) Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int J Environ Sci Technol 6(2):175–182. https://doi.org/10.1007/bf03327619

    Article  CAS  Google Scholar 

  58. Asia IO, Akporhonor EE (2007) Characterization and physicochemical treatment of wastewater from rubber processing factory. Int J Phys Sci 2(3):61–67

    Google Scholar 

  59. Mutlu E, Kutlu B, Yanik T, Demir T (2014) Faraz stream (Hafik – Sivas) water quality characteristics and monthly variations. Stand Sci Res Essays 2(11):587–594

    Google Scholar 

  60. Boudoukha A, Boulaarak M (2013) Pollution des eaux du barrage de Hammam Grouz par les nutriments (Est algérien). Bulletin du Service Géologique de l’Algérie 24(2):139–149

    Google Scholar 

  61. Hassoune E, El Kettani S, Kalouli Y, Bouzidi A (2010) Contamination bactériologique des eaux souterraines par les eaux usées de la ville Settat, Maroc. Rev Microbiol Indust Sanit Environ 4:1–21

    Google Scholar 

  62. Bontoux J (1993) Introduction à l’étude des eaux douces, eaux naturelles, eaux usées, eaux de boisson. Cebedoc, Liège

    Google Scholar 

  63. Thomas O (1995) Métrologie des Eaux Résiduaires. Cebedoc Tec & Doc – Lavoisier, Paris

    Google Scholar 

  64. Bejaoui B, Elbour M, Belhassen M, Mrouna R, Boukef I, Mejri S et al (2008) Etude de l’effet des facteurs du milieu sur la distribution des bactéries entériques dans la lagune de Bizerte (Nord-Tunisie). Bulletin de l’Institut National des Sciences et Technologies de la Mer 35:117–129

    Google Scholar 

  65. Aboulkacem A, Chahlaoui A, Soulaymani A, Rhazi-Filali F, Benali D (2007) Etude comparative de la qualité bactériologique des eaux des oueds Boufekrane et Ouislane à la traversée de la ville de Meknès (Maroc). Rev Microbiol Indust Sanit Environ 1:10–22

    Google Scholar 

  66. Garnier J, Servais P, Gilles B (1992) Bacterioplankton in the seine river (France): impact of the Parisian urban effluent. Can J Microbiol 38:56–64. https://doi.org/10.1139/m92-009

    Article  Google Scholar 

  67. Omrane I, Bour M, Mejri S, Bjaoui B, Mraouna R, Harzallah A, Boudabous A (2009) Étude de l’influence des facteurs environnementaux sur la distribution de différentes populations bactériennes dans une station mytilicole de la lagune de Bizerte (Nord-Tunisie). J Water Sci 22(1):79–91. https://doi.org/10.7202/019825ar

    Article  Google Scholar 

  68. Mishra A, Mukherjee A, Tripathi BD (2009) Seasonal and temporal variations in physico-chemical and bacteriological characteristics of river Ganga in Varanasi. Int J Environ Res 3(3):395–402

    CAS  Google Scholar 

  69. North RL, Khan NH, Ahsan M, Prestie C, Korber DR, Lawrence JR, Hudson JJ (2014) Relationship between water quality parameters and bacterial indicators in a large prairie reservoir: Lake Diefenbaker, Saskatchewan, Canada. Can J Microbiol 60(4):243–249. https://doi.org/10.1139/cjm-2013-0694

    Article  CAS  Google Scholar 

  70. Uzoigwe JC, O’Brien EH, Brown EJ (2007) Using nutrient utilization patterns to determine the source of Escherichia coli found in surface water. Afr J Environ Sci Technol 1(1):7–13

    Google Scholar 

  71. Ghadbane N (2003) Les eaux usées urbaines. Magister dissertation, University of M’sila, M’Sila

    Google Scholar 

  72. Davies CM, Long JAH, Donald M, Ashbolt NJ (1995) Survival of fecal microorganisms in marine and freshwater sediments. Appl Environ Microbiol 61(5):1888–1896

    Article  CAS  Google Scholar 

  73. Hong H, Qiu J, Liang Y (2010) Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta region, China. J Environ Sci 22(5):663–668. https://doi.org/10.1016/S1001-0742(09)60160-1

    Article  Google Scholar 

  74. Guiraud J, Galzy P (1980) Analyse microbiologique dans les industries alimentaires. http://www.nal.usda.gov/

  75. Petransxiene D, Lapied L (1981) Qualité bactériologique du lait et produits laitiers. Analyses et tests2nd edn. Lavoisier Tec & Doc, Paris

    Google Scholar 

  76. Le Chevalier MW (2003) Conditions favouring coliform and HPC bacterial growth in drinking water and on water contact surfaces. Heterotrophic plate counts and drinking-water safety. World Health Organization, IWA Publishing, London

    Google Scholar 

  77. Flint KP (1987) The long-term survival of Escherichia coli in river water. J Appl Bacteriol 63(3):261–270. https://doi.org/10.1111/j.1365-2672.1987.tb04945.x

    Article  CAS  Google Scholar 

  78. Chedad K, Assobhei O (2007) Etude de la survie des bactéries de contamination fécale (coliformes fécaux) dans les eaux de la zone ostréicole de la lagune de Oualidia (Maroc). Bull Inst Sci Rabat 29:71–79

    Google Scholar 

  79. Hughes KA (2003) Influence of seasonal environmental variables on the distribution of presumptive fecal coliforms around an Antarctic research station. Appl Environ Microbiol 69(8):4884–4891. https://doi.org/10.1128/aem.69.8.4884-4891.2003

    Article  CAS  Google Scholar 

  80. Mancini JL (1978) Numerical estimates of coliform mortality rates under various conditions. J Water Pollut Control Feder 50(11):2477–2484

    Google Scholar 

  81. McFeters GA, Cameron SC, Le Chevallier MW (1982) Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appl Environ Microbiol 43(1):97–103

    Article  CAS  Google Scholar 

  82. Bordalo AA, Onrassami R, Dechsakulwatana C (2002) Survival of faecal indicator bacteria in tropical estuarine waters (Bangpakong River, Thailand). J Appl Microbiol 93(5):864. https://doi.org/10.1046/j.1365-2672.2002.01760.x

    Article  CAS  Google Scholar 

  83. Mayo AW (1995) Modeling coliform mortality in waste stabilization ponds. J Environ Eng 121(2):140–152. https://doi.org/10.1061/(asce)0733-9372(1995)121:2(140)

    Article  CAS  Google Scholar 

  84. Curtis TP, Mara DD, Silva SA (1992) Influence of pH, oxygen, and humic substances on ability of sunlight to damage fecal coliforms in waste stabilization pond water. Appl Environ Microbiol 58(4):1335–1343

    Article  CAS  Google Scholar 

  85. van der Steen P, Brenner A, Shabtai Y, Oron G (2000) Improved fecal coliform decay in integrated duckweed and algal ponds. Water Sci Technol 42(10–11):363–370. https://doi.org/10.2166/wst.2000.0682

    Article  Google Scholar 

  86. Juhna T, Birzniece D, Rubulis J (2007) Effect of phosphorus on survival of Escherichia coli in drinking water biofilms. Appl Environ Microbiol 73(11):3755–3758. https://doi.org/10.1128/AEM.00313-07

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroun Chenchouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guemmaz, F., Neffar, S., Chenchouni, H. (2019). Physicochemical and Bacteriological Quality of Surface Water Resources Receiving Common Wastewater Effluents in Drylands of Algeria. In: Negm, A.M., Bouderbala, A., Chenchouni, H., Barceló, D. (eds) Water Resources in Algeria - Part II. The Handbook of Environmental Chemistry, vol 98. Springer, Cham. https://doi.org/10.1007/698_2019_400

Download citation

Publish with us

Policies and ethics

Navigation