On Kernel Target Alignment

  • Chapter
Innovations in Machine Learning

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 194))

  • 3676 Accesses

Abstract

Kernel based methods are increasingly being used for data modeling because of their conceptual simplicity and outstanding performance on many tasks. However, in practice the kernel function is often chosen using trial-and-error heuristics. In this paper we address the problem of measuring the degree of agreement between a kernel and a learning task. We propose a quantity to capture this notion, which we call alignment. We study its theoretical properties, and derive a series of simple algorithms for adapting a kernel to the targets. This produces a series of novel methods for both transductive and inductive inference, kernel combination and kernel selection for both classification and regression problems that are computationally feasible for large problems. The algorithms are tested on publicly available datasets and are shown to exhibit good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Bach and M.I. Jordan. Kernel independent components analysis. Department of computer science, University of California, Berkeley, Berkeley, CA, 2001.

    Google Scholar 

  2. S. Ben-David, N. Eiron, and H.U. Simon. Non-embedability in Euclidean half spaces. In NIPS Workshop on New Perspectives in Kernel Methods, 2000.

    Google Scholar 

  3. K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

    Google Scholar 

  4. M.W. Berry, B. Hendrickson, and P. Raghaven. Sparse matrix re-ordering schemes for browsing hypertext. In J. Renegar, M. Shub, and S. Smale, editors, The Mathematics of Numerical Analysis, pages 91–123. American Mathematical Society, 1996.

    Google Scholar 

  5. A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In International Conference on Machine Learning (ICML) 2001, 2001.

    Google Scholar 

  6. B. Carl and I. Stephani. Entropy, compactness and the approximation of operators. Cambridge University Press, Cambridge, UK, 1990.

    Google Scholar 

  7. N. Cristianini,, J. Shawe-Taylor, and H. Lodhi. Latent semantic kernels. In International Conference on Machine Learning (ICML 2000), 2000.

    Google Scholar 

  8. N. Cristianini, A. Elisseeff, J. Shawe-Taylor, and J. Kandola. On kernel target alignment. In Neural Information Processing Systems 14 (NIPS 14), 2001.

    Google Scholar 

  9. N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines. Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  10. L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Number 31 in Applications of mathematics. Springer, New York, 1996.

    Google Scholar 

  11. P. Drineas, R. Kannan, S. Vampala, A. Frieze, and V. Vinay. Clustering in large graphs and matrices. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

    Google Scholar 

  12. J. Forster, N. Schmitt, and H. U. Simon. Estimating the optimal margins of embeddings in euclidean half spaces. In Submitted Computational Learning Theory (COLT) 2001, 2001.

    Google Scholar 

  13. R. Herbrich. Learning Kernel Classifiers-Theory and Algorithms. MIT Press, 2002.

    Google Scholar 

  14. N. Lanckriet, N. Cristianini, P. Bartlett, L. El-Ghoui, and M.I Jordan. Learning the kernel matrix using semi-definite programming. In International Conference on Machine Learning (ICML 2002), 2002.

    Google Scholar 

  15. C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, pages 148–188, 1989.

    Google Scholar 

  16. P. Pavlidas, J. Weston, J. Cai, and W.N. Grundy. Gene functional classification from heterogeneous data. In Proceedings of the Fifth International Conference on Computational Molecular Biology, 2001.

    Google Scholar 

  17. A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal Matrix Analysis, 11(3):242–248, 1990.

    MathSciNet  Google Scholar 

  18. S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow, England, 1988.

    Google Scholar 

  19. B. Scholkopf and A. Smola. Learning With Kernels-Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

    Google Scholar 

  20. B. Scholkopf, A. Smola, and K. Muller. Kernel principal components analysis. In Advances in Kernel Methods-Support Vector Learning. MIT, 2000.

    Google Scholar 

  21. J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):1926–1940, 1998.

    Article  MathSciNet  Google Scholar 

  22. J. Shi and J. Malik. Normalised cuts and image segmentation. In In IEEE Conf. on Computer Vision and Pattern Recognition, pages 731–737, 1997.

    Google Scholar 

  23. A. Smola and B. Scholkopf. Sparse greedy matrix approximation for machine learning. In In Proceedings International Conference on Machine Learning 2000, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J. (2006). On Kernel Target Alignment. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Machine Learning. Studies in Fuzziness and Soft Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33486-6_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-33486-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30609-2

  • Online ISBN: 978-3-540-33486-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation