Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 309))

Abstract

Like other members of the Reoviridae, bluetongue virus faces the same constraints on structure and assembly that are imposed by a large dsRNA genome. However, since it is arthropod-transmitted, BTV must have assembly pathways that are sufficiently flexible to allow it to replicate in evolutionarily distant hosts. With this background, it is hardly surprising that BTV interacts with highly conserved cellular pathways during morphogenesis and trafficking. Indeed, recent studies have revealed striking parallels between the pathways involved in the entry and egress of nonenveloped BTV and those used by enveloped viruses. In addition, recent studies with the protein that is the major component of the BTV viroplasm have revealed how the assembly and, as importantly, the disassembly of this structure may be achieved. This is a first step towards resolving the interactions that occur in these virus ‘assembly factories’. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afrikanova I, Miozzo MC, Giambiagi S, Burrone O (1996) Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2265

    PubMed  CAS  Google Scholar 

  • Arcangeletti MC, Pinardi F, Missorini S, De Conto F, Conti G, Portincasa P, Scherrer K, Chezzi C (1997) Modification of cytoskeleton and prosome networks in relation to protein synthesis in influenza A virus-infected LLC-MK2 cells. Virus Res 51:19–34

    PubMed  CAS  Google Scholar 

  • Bae SH, Cheong HK, Lee JH, Cheong C, Kainosho M, Choi BS (2001) Structural features of an influenza virus promoter and their implications for viral RNA synthesis. Proc Natl Acad Sci U S A 98:10602–10607

    PubMed  CAS  Google Scholar 

  • Bannerjee AK, Shatkin AJ (1970) Transcription in vitro by reovirus associated ribonucleic acid-dependent polymerase. J Virol 6:1–11

    Google Scholar 

  • Bansal OB, Stokes A, Bansal A, Bishop DHL, Roy P (1998) Membrane organization of bluetongue virus non-structural glycoprotein NS3. J Virol 72:3362–3369

    PubMed  CAS  Google Scholar 

  • Beasley BE, Hu WS (2002) cis-Acting elements important for retroviral RNA packaging specificity. J Virol 76:4950–4960

    PubMed  CAS  Google Scholar 

  • Beaton AR, Rodriguez J, Reddy YK, Roy P (2002) The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proc Natl Acad Sci U S A 99:13154–13159

    PubMed  CAS  Google Scholar 

  • Becker MM, Peters TR, Dermody TS (2003) Reovirus sigma NS and mu NS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 77:5948–5963

    PubMed  CAS  Google Scholar 

  • Blot V, Perugi F, Gay B, Prevost MC, Briant L, Tangy F, Abriel H, Staub O, Dokhelar MC, Pique C (2004) Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. J Cell Sci 117:2357–2367

    PubMed  CAS  Google Scholar 

  • Boyce M, Wehrfritz J, Noad R, Roy P (2004) Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity. J Virol 78:3994–4002

    PubMed  CAS  Google Scholar 

  • Broering TJ, Parker JS, Joyce PL, Kim J, Nibert ML (2002) Mammalian reovirus nonstructural protein muNS forms large inclusions and colocalizes with reovirus microtubule-associated protein mu2 in transfected cells. J Virol 76:8285–8297

    PubMed  CAS  Google Scholar 

  • Brookes SM, Hyatt AD, Eaton BT (1993) Characterization of virus inclusion bodies in bluetongue virus infected cells. J Gen Virol 74:525–530

    PubMed  Google Scholar 

  • Butan C, Van Der Zandt H, Tucker PA(2004) Structure and assembly of the RNA binding domain of bluetongue virus non-structural protein 2. J Biol Chem 279:37613–37621

    PubMed  CAS  Google Scholar 

  • Charpilienne A, Lepault J, Rey F, Cohen J (2002) Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. J Virol 76:7822–7831

    PubMed  CAS  Google Scholar 

  • Chen D, Zeng CQ, Wentz MJ, Gorziglia M, Estes MK, Ramig RF (1994) Template-dependent, in vitro replication of rotavirus RNA. J Virol 68:7030–7039

    PubMed  CAS  Google Scholar 

  • Cohen J (1977) Ribonucleic acid polymerase activity associated with purified calf rotavirus. J Gen Virol 36:395–402

    PubMed  CAS  Google Scholar 

  • Colman PM, Lawrence MC (2003) The structural biology of type I viral membrane fusion Nat Rev Mol Cell Biol 4:309–319

    PubMed  CAS  Google Scholar 

  • Cordo SM, Candurra NA (2003) Intermediate filament integrity is required for Junin virus replication. Virus Res 97:47–55

    PubMed  CAS  Google Scholar 

  • Craven RC, Harty RN, Paragas J, Palese P, Wills JW (1999) Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 73:3359–3365

    PubMed  CAS  Google Scholar 

  • Creutz CE (1992) The annexins and exocytosis. Science 258:924–931

    PubMed  CAS  Google Scholar 

  • Devaney MA, Kendall J, Grubman MJ (1988) Characterization of a non-structural phosphoprotein of two orbiviruses. Virus Res 11:151–164

    PubMed  CAS  Google Scholar 

  • Eaton BT, Hyatt AD (1989) Association of bluetongue virus with the cytoskeleton. Subcell Biochem 15:233–273

    PubMed  CAS  Google Scholar 

  • Eaton BT, Hyatt AD, White JR (1987) Association of bluetongue virus with the cytoskeleton. Virology 157:107–116

    PubMed  CAS  Google Scholar 

  • Eaton BT, Hyatt AD, White JR (1988) Localization of the nonstructural protein NS1 in bluetongue virus-infected cells and its presence in virus particles. Virology 163:527–537

    PubMed  CAS  Google Scholar 

  • Eichwald C, Vascotto F, Fabbretti E, Burrone O (2002) Rotavirus NSP5: map** phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76:3461–3470

    PubMed  CAS  Google Scholar 

  • Ferreira LR, Moussatche N, Moura Neto V (1994) Rearrangement of intermediate filament network of BHK-21 cells infected with vaccinia virus. Arch Virol 138:273–285

    PubMed  CAS  Google Scholar 

  • Fillmore GC, Lin H, Li JK-K (2002) Localization of the single-stranded RNA-binding domains of bluetongue virus nonstructural protein NS2. J Virol 76:499–506

    PubMed  CAS  Google Scholar 

  • Forzan M, Wirblich C, Roy P (2004) A capsid protein of nonenveloped Bluetongue virus exhibits membrane fusion activity. Proc Natl Acad Sci U S A 101:2100–2105

    PubMed  CAS  Google Scholar 

  • Freed EO (2004) Mechanisms of enveloped virus release. Virus Res 106:85–86

    PubMed  CAS  Google Scholar 

  • French TJ, Roy P (1990) Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol 64:1530–1536

    PubMed  CAS  Google Scholar 

  • French TJ, Inumaru S, Roy P (1989) Expression of two related nonstructural proteins of bluetongue virus (BTV) type 10 in insect cells by a recombinant baculovirus: production of polyclonal ascitic fluid and characterization of the gene product in BTV-infected BHK cells. J Virol 63:3270–3278

    PubMed  CAS  Google Scholar 

  • French TJ, Marshall JJ, Roy P (1990) Assembly of double-shelled, virus-like particles of bluetongue virus by the simultaneous expression of four structural proteins. J Virol 64:5695–5700

    PubMed  CAS  Google Scholar 

  • Garcia-Barreno B, Jorcano JL, Aukenbauer T, Lopez-Galindez C, Melero JA (1988) Participation of cytoskeletal intermediate filaments in the infectious cycle of human respiratory syncytial virus (RSV). Virus Res 9:307–321

    PubMed  CAS  Google Scholar 

  • Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65

    PubMed  CAS  Google Scholar 

  • Gorman BM, Taylor J, Walker PJ (1983) Orbiviruses. In: Joklik WK (ed) TheReoviridae. Plenum, New York, pp 287–357

    Google Scholar 

  • Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP (1999) The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97:481–490

    PubMed  CAS  Google Scholar 

  • Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PPC, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478

    PubMed  CAS  Google Scholar 

  • Grubman MJ, Appleton JA, Letchworth GJ (1983) Identification of bluetongue virus type 17 genome segments coding for polypeptides associated with virus neutralization and intergroup reactivity. Virology 131:355–366

    PubMed  CAS  Google Scholar 

  • Guirakhoo F, Catalan JA, Monath TP (1995) Adaptation of bluetongue virus in mosquito cells results in overexpression of NS3 proteins and release of virus particles. Arch Virol 140:967–974

    PubMed  CAS  Google Scholar 

  • Han Z, Harty RN (2004) The NS3 protein of bluetongue virus exhibits viroporin-like properties. J Biol Chem 279:43092–43097

    PubMed  CAS  Google Scholar 

  • Harty RN, Paragas J, Sudol M, Palese P (1999) A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929

    PubMed  CAS  Google Scholar 

  • Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP (2000) A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A97:13871–13876

    PubMed  CAS  Google Scholar 

  • Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, Whitt MA, Schnell MJ (2001) Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. J Virol 75:10623–10629

    PubMed  CAS  Google Scholar 

  • Hassan SH, Roy P (1999) Expression and functional characterization of bluetongue virus VP2 protein: role in cell entry. J Virol 73:9832–9842

    PubMed  CAS  Google Scholar 

  • Hassan SH, Wirblich C, Forzan M, Roy P (2001) Expression and functional characterization of bluetongue virus VP5 protein: role in cellular permeabilization. J Virol 75:8356–8367

    PubMed  CAS  Google Scholar 

  • Heidecker G, Lloyd PA, Fox K, Nagashima K, Derse D (2004) Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 78:6636–6648

    PubMed  CAS  Google Scholar 

  • Hewat EA, Booth TF, Loudon PT, Roy P (1992a) Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology 189:10–20

    PubMed  CAS  Google Scholar 

  • Hewat EA, Booth TF, Roy P (1992b) Structure of bluetongue virus particles by cryo-electron microscopy. J Struct Biol 109:61–69

    PubMed  CAS  Google Scholar 

  • Hewat EA, Booth TF, Roy P (1994) Structure of correctly self-assembled bluetongue virus-like particles. J Struct Biol 112:183–191

    PubMed  CAS  Google Scholar 

  • Huismans H (1979) Protein synthesis in bluetongue virus-infected cells. Virology 92:385–396

    PubMed  CAS  Google Scholar 

  • Huismans H, Els HJ (1979) Characterization of the tubules associated with the replication of three different orbiviruses. Virology 92:397–406

    PubMed  CAS  Google Scholar 

  • Huismans H, Van der Walt NT, Cloete M, Erasmus BJ (1983) The biochemical and immunological characterization of bluetongue virus outer capsid polypeptides In: Compans RW, Bishop DHL (eds) Double-stranded RNA viruses. Elsevier, New York, pp 165–172

    Google Scholar 

  • Huismans H, Van Dijk AA, Els HJ (1987) Uncoating of parental bluetongue virus to core and subcore particles in infected L cells. Virology 157:180–188

    PubMed  CAS  Google Scholar 

  • Hyatt AD, Eaton BT (1988) Ultrastructural distribution of the major capsid proteins within bluetongue virus and infected cells. J Gen Virol 69:805–815

    PubMed  CAS  Google Scholar 

  • Hyatt AD, Eaton BT, Brookes SM (1989) The release of bluetongue virus from infected cells and their superinfection by progeny virus. Virology 173:21–34

    PubMed  CAS  Google Scholar 

  • Hyatt AD, Gould AR, Coupar B, Eaton BT (1991) Localization of the non-structural protein NS3 in bluetongue virus-infected cells. J Gen Virol 72:2263–2267

    PubMed  CAS  Google Scholar 

  • Hyatt AD, Zhao Y, Roy P (1993) Release of bluetongue virus-like particles from insect cells ismediated by BTV nonstructural protein NS3/NS3A. Virology 193:592–603

    PubMed  CAS  Google Scholar 

  • Iwata H, Yamagawa M, Roy P (1992) Evolutionary relationships among the gnattransmitted orbiviruses that cause African horse sickness, bluetongue, and epizootic hemorrhagic disease as evidenced by their capsid protein sequences. Virology 191:251–261

    PubMed  CAS  Google Scholar 

  • Iwata H, Yamakawa M, Roy P (1995) Nucleotide sequences of African horsesickness virus serotype 4 RNA segments for encodingmajor capsid proteins and its evolutionary relationships among Orbiviruses. In: Proceedings of the International Workshop for the Development of Diagnostic and Preventative Methods by Genetic Engineering for African Horsesickness and Related Orbiviruses, NIAH, Tokyo, Japan, pp 109–127

    Google Scholar 

  • Jacobs BL, Langland JO (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219:339–349

    PubMed  CAS  Google Scholar 

  • Kar AK, Roy P (2003) Defining the structure-function relationships of bluetongue virus helicase protein VP6. J Virol 77:11347–11356

    PubMed  CAS  Google Scholar 

  • Kar AK, Ghosh M, Roy P (2004) Map** the assembly of Bluetongue virus scaffolding protein VP3. Virology 324:387–399

    PubMed  CAS  Google Scholar 

  • Karczewski MK, Strebel K (1996) Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. J Virol 70:494–507

    PubMed  CAS  Google Scholar 

  • Kohli E, Pothier P, Tosser G, Cohen J, Sandino AM, Spencer E (1993) In vitro reconstitution of rotavirus transcriptional activity using viral cores and recombinant baculovirus expressed VP6. Arch Virol 133:451–458

    PubMed  CAS  Google Scholar 

  • Le Blois H, Fayard B, Urakawa T, Roy P (1991) Synthesis and characterization of chimaeric particles between epizootic haemorrhagic disease virus andbluetongue virus: functional domains are conserved on the VP3 protein. J Virol 65:4821–4831

    PubMed  Google Scholar 

  • Licata JM, Simpson-Holley M, Wright NT, Han Z, Paragas J, Harty RN (2003) Overlap** motifs (PTAP, PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77:1812–1819

    PubMed  CAS  Google Scholar 

  • Limn CK, Roy P (2003) Intermolecular interactions in a two-layered viral capsid that requires a complex symmetry mismatch. J Virol 77:11114–11124

    PubMed  CAS  Google Scholar 

  • Limn C-H, Staeuber N, Monastyrskaya K, Gouet P, Roy P (2000) Functional dissection of the major structural protein of bluetongue virus: identification of key residues within VP7 essential for capsid assembly. J Virol 74:8658–8669

    PubMed  CAS  Google Scholar 

  • Liu HM, Booth TF, Roy P (1992) Interactions between bluetongue virus core and capsid proteins translated in vitro. J Gen Virol 73:2577–2584

    PubMed  CAS  Google Scholar 

  • Loudon PT, Roy P (1992) Interaction of nucleic acids with core-like and subcore-like particles of bluetongue virus. Virology 191:231–236

    PubMed  CAS  Google Scholar 

  • Loudon PT, Hirasawa T, Oldfield S, Murphy M, Roy P (1991) Expression of the outer capsid protein VP5 of two bluetongue viruses, and synthesis of chimeric doubleshelled virus-like particles using combinations of recombinant baculoviruses. Virology 182:793–801

    PubMed  CAS  Google Scholar 

  • Lymperopoulos K, Wirblich C, Brierley I, Roy P (2003) Sequence specificity in the interaction of Bluetongue virus non-structural protein 2 (NS2) with viral RNA. J Biol Chem 278:31722–31730

    PubMed  CAS  Google Scholar 

  • Markotter W, Theron J, Nel LH (2004) Segment specific inverted repeat sequences in bluetongue virusmRNA are required for interaction with the virus nonstructural protein NS2. Virus Res 105:1–9

    PubMed  CAS  Google Scholar 

  • Martinez Costas J, Sutton G, Ramadevi N, Roy P (1998) Guanylyltransferase and RNA 5’-triphosphatase activities of the purified expressed VP4 protein of bluetongue virus. J Mol Biol 280:859–866

    PubMed  CAS  Google Scholar 

  • Meggio F, Pinna L (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    PubMed  CAS  Google Scholar 

  • Mertens PP, Burroughs JN, Anderson J (1987) Purification and properties of virus particles, infectious subviral particles, and cores of bluetongue virus serotypes 1 and 4. Virology 157:375–386

    PubMed  CAS  Google Scholar 

  • Meyer JC, Bergmann CC, Bellamy AR (1989) Interaction of rotavirus cores with the non-structural glycoprotein NS28. Virology 171:98–107

    PubMed  CAS  Google Scholar 

  • Mishra RK, Jatiani SS, Kumar A, Simhadri VR, Hosur RV, Mittal R (2004) Dynamin interacts with members of the sumoylation machinery. J Biol Chem 279:31445–31454

    PubMed  CAS  Google Scholar 

  • Modrof J, Lymperopoulos K, Roy P (2005) Phosphorylation of Bluetongue virus nonstructural protein 2 is essential for formation of viral inclusion bodies. J Virol 79:10023–10031

    PubMed  CAS  Google Scholar 

  • Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425

    PubMed  CAS  Google Scholar 

  • Mortola E, Noad R, Roy P (2004) Bluetongue virus outer capsid proteins are sufficient to trigger apoptosis in mammalian cells. J Virol 78:2875–2883

    PubMed  CAS  Google Scholar 

  • Murti KG, Goorha R, Klymkowsky MW (1988) A functional role for intermediate filaments in the formation of frog virus 3 assembly sites. Virology 162:264–269

    PubMed  CAS  Google Scholar 

  • Nason E, Rothnagel R, Muknerge SK, Kar AK, Forzan M, Prasad BVV, Roy P (2004) Interactions between the inner and outer capsids of Bluetongue virus. J Virol 78:8059–8067

    PubMed  CAS  Google Scholar 

  • Nedellec P, Vicart P, Laurent-Winter C, Martinat C, Prevost MC, Brahic M (1998) Interaction of Theiler’s virus with intermediate filaments of infected cells. J Virol 72:9553–9560

    PubMed  CAS  Google Scholar 

  • Owens R, Roy P (2004) Role of an arbovirus nonstructural protein in cellular pathogenesis and virus release. J Virol 78:6649–6656

    PubMed  CAS  Google Scholar 

  • Patton JT (1996) Rotavirus VP1 alone specifically binds to the 3′ end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. J Virol 70:7940–7947

    PubMed  CAS  Google Scholar 

  • Patton JT, Jones MT, Kalbach AN, He YW, **aobo J (1997) Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71:9618–9626

    PubMed  CAS  Google Scholar 

  • Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100:12978–12983

    PubMed  CAS  Google Scholar 

  • Poncet D, Aponte C, Cohen J (1993) Rotavirus protein NSP3 (NS34) is bound to the 3′ end consensus sequence of viral mRNAs in infected cells. J Virol 67:3159–3165

    PubMed  CAS  Google Scholar 

  • Poncet D, Lindenbaum P, L’Haridon R, Cohen J (1997) In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms J Virol 71:34–41

    PubMed  CAS  Google Scholar 

  • Prasad BVV, Yamaguchi S, Roy P (1992) Three-dimensional structure of single-shelled bluetongue virus. J Virol 66:2135–2142

    PubMed  CAS  Google Scholar 

  • Prasad BVV, Rothnagel R, Zeng CQ, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473

    PubMed  CAS  Google Scholar 

  • Ramadevi N, Roy P (1998) Bluetongue virus core protein VP4 has nucleoside triphosphate phosphohydrolase activity. J Gen Virol 79:2475–2480

    PubMed  CAS  Google Scholar 

  • Ramadevi N, Burroughs JN, Mertens PPC, Jones IM, Roy P (1998) Cap** and methylation of mRNA by purified recombinant VP4 protein of Bluetongue virus. Proc Natl Acad Sci U S A 95:13537–13542

    PubMed  CAS  Google Scholar 

  • Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family ofmultifunctional calcium-and phospholipid-binding proteins. Biochem Biophys Res Acta 1197:63–93

    CAS  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–967

    PubMed  CAS  Google Scholar 

  • Roy P (1996) Orbivirus structure and assembly. Virology 216:1–11

    PubMed  CAS  Google Scholar 

  • Sakurai A, Yasuda J, Takano H, Tanaka Y, Hatakeyama M, Shida H(2004) Regulation of human T-cell leukemia virus type 1 (HTLV-1) budding by ubiquitin ligase Nedd4. Microbes Infect 6:150–156

    PubMed  CAS  Google Scholar 

  • Samuel CE (1998) Reoviruses and the interferon system. Curr Top Microbiol Immunol 233:125–145

    PubMed  CAS  Google Scholar 

  • Stauber N, Martinez-Costas J, Sutton G, Monastyrskaya K, Roy P (1997) Bluetongue virus VP6 protein binds ATP and exhibits an RNA-dependent ATPase functionand a helicase activity that catalyze the unwinding of double-stranded RNA substrates. J Virol 71:7220–7226

    PubMed  CAS  Google Scholar 

  • Tao Y, Farsetta DL, Nibert ML, Harrison SC (2002) RNA Synthesis in a cage-structural studies of reovirus polymerase lambda3. Cell 111:733–745

    PubMed  CAS  Google Scholar 

  • Theron J, Nel LH (1997) Stable protein-RNA interaction involves the terminal domains of bluetongue virus mRNA, but not the terminally conserved sequences. Virology 229:134–142

    PubMed  CAS  Google Scholar 

  • Thomas CP, Booth TF, Roy P (1990) Synthesis of bluetongue virus-encoded phosphoprotein and formation of inclusion bodies by recombinant baculovirus in insect cells: it binds the single-stranded RNA species. J Gen Virol 71:2073–2083

    PubMed  CAS  Google Scholar 

  • Timmins J, Schoehn G, Ricard-Blum S, Scianimanico S, Vernet T, Ruigrok RW, Weissenhorn W (2003) Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326:493–502

    PubMed  CAS  Google Scholar 

  • Urakawa T, Roy P (1988) Bluetongue virus tubules made in insect cells by recombinant baculoviruses: expression of the NS1 gene of bluetongue virus serotype 10. J Virol 62:3919–3927

    PubMed  CAS  Google Scholar 

  • Van Dijk AA, Huismans H (1980) The in vitro activation and further characterization of the bluetongue virus-associated transcriptase. Virology 104:347–356

    PubMed  Google Scholar 

  • VanDijk AA, Huismans H (1982) The effect of temperature on the in vitro transcriptase reaction of bluetongue virus, epizootic haemorrhagic disease virus and African horsesickness virus. Onderstepoort J Vet Res 49:227–232

    PubMed  Google Scholar 

  • Van Dijk AA, Huismans H (1988) In vitro transcription and translation of bluetongue virus mRNA. J Gen Virol 69:573–581

    PubMed  Google Scholar 

  • Van Staden V, Huismans H (1991) A comparison of the genes which encode nonstructural protein NS3 of different orbiviruses. J Gen Virol 72:1073–1079

    PubMed  Google Scholar 

  • Van Staden V, Stoltz MA, Huismans H (1995) Expression of nonstructural protein NS3 of African horsesickness virus (AHSV): evidence for a cytotoxic effect of NS3 in insect cells, and characterization of the gene products in AHSV infected Vero cells. Arch Virol 140:289–306

    PubMed  Google Scholar 

  • Venkatesan S, Gershowitz A, Moss B (1980) Modification of the 5′ end of mRNA. Association of RNA triphosphatase with the RNA guanylyltransferase-RNA (guanine-7-)methyltransferase complex from vaccinia virus. J Biol Chem 255:903–908

    PubMed  CAS  Google Scholar 

  • Verwoerd DW, Els HJ, De Villiers EM, Huismans H (1972) Structure of the bluetongue virus capsid. J Virol 10:783–794

    PubMed  CAS  Google Scholar 

  • Wirblich C, Bhattacharya P, Roy P (2005) Non-structural protein 3 of Bluetongue virus assists virus release by recruiting the ESCRT I protein Tsg101. J Virol 80:128–105

    Google Scholar 

  • Wu X, Chen SY, Iwata H, Compans RW, Roy P (1992) Multiple glycoproteins synthesized by the smallest RNA segment (S10) of bluetongue virus J Virol 66:7104–7112

    PubMed  CAS  Google Scholar 

  • Yasuda J, Nakao M, Kawaoka Y, Shida H (2003) Nedd4 regulates egress of Ebola viruslike particles from host cells. J Virol 77:9987–9992

    PubMed  CAS  Google Scholar 

  • Zetina CR (2001) Aconserved helix-unfoldingmotif in the naturally unfolded proteins. Proteins 44:479–483

    PubMed  CAS  Google Scholar 

  • Zhao Y, Thomas C, Bremer C, Roy P (1994) Deletion and mutational analyses of bluetongue virus NS2 protein indicate that the aminobutnot the carboxy terminus of the protein is critical for RNA-protein interactions. J Virol 68:2179–2185

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roy, P., Noad, R. (2006). Bluetongue Virus Assembly and Morphogenesis. In: Roy, P. (eds) Reoviruses: Entry, Assembly and Morphogenesis. Current Topics in Microbiology and Immunology, vol 309. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30773-7_4

Download citation

Publish with us

Policies and ethics

Navigation