The Transformative Impact of Genomics on Sage-Grouse Conservation and Management

  • Chapter
  • First Online:
Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

For over two decades, genetic studies have been used to assist in the conservation and management of both Greater Sage-grouse (Centrocercus urophasianus) and Gunnison Sage-grouse (C. minimus), addressing a wide variety of topics including taxonomy, parentage, population connectivity, and demography. The field of conservation genetics has been transformed by dramatic improvements in sequencing technology, facilitating genomic studies in many wildlife species. The quality and amount of data generated by genomic methods vastly exceed that of traditional genetic studies, allowing for increased precision in estimating genetic parameters of interest. Perhaps more importantly, genomic methods can provide insight into non-neutral evolution such as adaptive divergence. Here we recount the shift from genetic to genomic methods using two wildlife species of substantial conservation interest, focusing on the improved capabilities and advantages of genomic methods. For instance, reassessment of divergence in sage-grouse using genomic methods confirmed strong differentiation between the two species and revealed that a small population in the state of Washington was more genetically distinct than previously recognized. Further, new genomic resources and approaches have been used to identify a family of genes linked to local dietary adaptation suggesting that sage-grouse may possess digestive and metabolic adaptations that mitigate the effects of consuming plant secondary metabolites like those found in sagebrush. Genetic variation among populations in these gene regions is thought to be involved with local dietary adaptations, and therefore maintaining the tie between sage-grouse and the chemistry of local sagebrush may be an important management consideration. We posit that the integration of newly developed genomic resources combined with the vast wealth of ecological and behavioral data for sage-grouse has the potential to shed light on mechanistic relationships that ultimately are vital to the conservation and management of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldrich JW. New subspecies of birds from western North America. Proc Biol Soc Wash. 1946;59:129–36.

    Google Scholar 

  • Aldrich JW, Duvall AJ. Distribution of American gallinaceous game birds. USFWS Circular 34, Washington, DC; 1955.

    Google Scholar 

  • Aldridge CL, Brigham RM. Distribution, status and abundance of greater sage-grouse, Centrocercus urophasianus, in Canada. Can Field Nat. 2003;117:25–34.

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    CAS  PubMed  Google Scholar 

  • American Ornithologist’s Union. Forty-second supplement to the American Ornithologists Union check-list for North American birds. Auk. 2000;117(3):847–58.

    Google Scholar 

  • Apa AD, Wiechman LA. Captive-rearing of Gunnison sage-grouse from egg collection to adulthood to foster proactive conservation and recovery of a conservation-reliant species. Zoo Biol. 2015;34:438–52.

    PubMed  Google Scholar 

  • Baumgardt JA, Goldberg CS, Reese KP, Connelly JW, Musil DD, Garton EO, Waits LP. A method for estimating sex ratio for sage-grouse using noninvasive genetic samples. Mol Ecol Resour. 2013;13:393–402.

    CAS  PubMed  Google Scholar 

  • Beever EA, Aldridge CL. Influences of free-roaming equids on sagebrush ecosystems, with a focus on greater sage-grouse. In: Knick ST, Connelly JW, editors. Greater sage-grouse: ecology and conservation of a landscape species and its habitats, Studies in avian biology, vol. 38. Berkley: University of California Press; 2011. p. 273–90.

    Google Scholar 

  • Benedict NG, Oyler-McCance SJ, Taylor SE, Braun CE, Quinn TW. Evaluation of the eastern (Centrocercus urophasianus urphasianus) and western (Centrocercus urophasianus phaios) subspecies of Sage-grouse using mitochondrial control-region sequence data. Conserv Genet. 2003;4:201–310.

    Google Scholar 

  • Bergerud AT. Mating systems in grouse. In: Bergerud AT, Gratson MW, editors. Adaptive strategies and population ecology of northern grouse. Minneapolis: University of Minnesota Press; 1988. p. 439–72.

    Google Scholar 

  • Bi K, Linderoth T, Vanderpool D, Good JM, Nielsen R, Moritz C. Unlocking the vault: next-generation museum population genomics. Mol Ecol. 2013;22:6018–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird KL, Aldridge CL, Carpenter JE, Paszkowski CA, Boyce MS, Coltman DW. The secret sex lives of sage-grouse: multiple paternity and intraspecific nest parasitism revealed through genetic analysis. Behav Ecol. 2012;24:29–38.

    Google Scholar 

  • Blickley JL, Word KR, Krakauer AH, Phillips JL, Sells SN, Taff CC, Wingfield JC, Patricelli GL. Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLOS One. 2012;7(11):e50462. https://doi.org/10.1371/journal.pone.0050462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun CE. Sage grouse declines in western North America: what are the problems? Proc West Assoc of State Fish Wildl Agencies. 1998;78:139–56.

    Google Scholar 

  • Braun CE, Baker MF, Eng RL, Gashwiler JS, Schroeder MH. Conservation committee report on effects of alteration of sagebrush communities on the associated avifauna. Wilson Bull. 1976;88:165–71.

    Google Scholar 

  • Bush KL, Vinsky MD, Aldridge CL, Paszkowski CA. A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater sage-grouse (Centrocercus urophasianus). Conserv Genet. 2005;6:867–70.

    Google Scholar 

  • Bush KL, Aldridge CL, Carpenter JE, Paszkowski CA, Boyce MS, Coltman DW. Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk. 2010;127:343–53.

    Google Scholar 

  • Bush KL, Dyte CK, Moynahan BJ, Aldridge CL, Sauls HS, Battazzo AM, Walker BL, Doherty KE, Tack J, Carlson J, Eslinger D, Nicholson J, Boyce MS, Naugle DE, Paszkowski CA, Coltman DW. Population structure and genetic diversity of greater sage-grouse (Centrocercus urophasianus) in fragmented landscapes at the northern edge of their range. Conserv Genet. 2011;12:527–42.

    Google Scholar 

  • Coates PS, Prochazka BG, Ricca MA, Wann GT, Aldridge CL, Hanser SE, Doherty KE, O’Donnell MS, Edmunds DE, Espinosa SP. Hierarchical population monitoring of greater sage-grouse (Centrocercus urophasianus) in Nevada and California – identifying populations for management at the appropriate spatial scale. U.S. Geological Survey Open-File Report 2017-1089.2017.

    Google Scholar 

  • Connelly JW, Braun CE. Long-term changes in sage grouse Centrocercus urophasianus populations in western North America. Wildl Biol. 1997;3:229–34.

    Google Scholar 

  • Connelly JW, Schroeder MA, Sands AR, Braun CE. Guidelines to manage sage grouse populations and their habitats. Wildl Soc Bull. 2000;28:967–85.

    Google Scholar 

  • Connelly JW, Knick ST, Schroeder MA, Stiver SJ. Conservation assessment of greater sage-grouse and sagebrush habitats. Western Association of Fish and Wildlife Agencies: Cheyenne; 2004.

    Google Scholar 

  • Cross TB, Naugle DE, Carlson JC, Schwartz MK. Hierarchical population structure in greater sage-grouse provides insight into management boundary delineation. Conserv Genet. 2016;17:1417–33.

    Google Scholar 

  • Cross TB, Naugle DE, Oyler-McCance SJ, Row JR, Fedy BC, Schwartz MK. The genetic network of greater sage-grouse: range-wide identification of keystone hubs of connectivity. Ecol Evol. 2018;8:5394–412.

    PubMed  PubMed Central  Google Scholar 

  • Dalke PD, Pyrah DB, Stanton DC, Crawford JE, Schlatterer EF. Ecology, productivity, and management of sage grouse in Idaho. J Wildl Manag. 1963;27:811–41.

    Google Scholar 

  • Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, et al. Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 2010;8:e1000475.

    PubMed  PubMed Central  Google Scholar 

  • Davis DM, Reese KP, Gardner SC, Bird KL. Genetic structure of greater sage-grouse (Centrocercus urophasianus) in a declining, peripheral population. Condor Ornithol Appl. 2015;117:530–44.

    Google Scholar 

  • Deagle BE, Kirkwood R, Jarman SN. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol. 2009;18:2022–38.

    CAS  PubMed  Google Scholar 

  • Defaveri J, Viitaniemi H, Leder E, Merilä J. Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. Mol Ecol Resour. 2013;13:377–92.

    CAS  PubMed  Google Scholar 

  • Edmunds DR, Aldridge CL, O’Donnell MS, Monroe AP. Greater sage-grouse population trends across Wyoming. J Wildl Manag. 2017;82:397–412.

    Google Scholar 

  • Ellsworth DL, Honeycutt RL, Silvy NJ, Rittenhouse KD, Smith MH. Mitochondrial-DNA and nuclear-gene differentiation in North American prairie grouse (genus Tympanuchus). Auk. 1994;111:661–71.

    Google Scholar 

  • Environment Canada. Amended recovery strategy for the greater sage-grouse (Centrocercus urophasianus uophasianus) in Canada, Species at risk act recovery strategy series. Ottawa: Environment Canada; 2014.

    Google Scholar 

  • Fedy BC, Row JR, Oyler-McCance SJ. Integration of genetic and demographic data to assess population risk in a continuously distributed species. Conserv Genet. 2017;18:89–104.

    Google Scholar 

  • Forester BR, Landguth EL, Hand BK, Balkenhol N. Landscape genomics for wildlife research. In: Hohenlohe PA, Rajora OP, editors. Population genomics: wildlife. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_56.

  • Frye GG, Connelly JW, Musil DD, Forbey JS. Phytochemistry predicts habitat selection by an avian herbivore at multiple spatial scales. Ecology. 2013;94:308–14.

    PubMed  Google Scholar 

  • Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC. Evolution driven by differential dispersal within a wild bird population. Nature. 2005;433:60–5.

    CAS  PubMed  Google Scholar 

  • Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics. 2015;201:1555–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson RM, Bradbury JW. Male and female mating strategies on sage grouse leks. In: Rubenstein DI, Wrangham RW, editors. Ecological aspects of social evolution. Princeton: Princeton University Press; 1986. p. 379–98.

    Google Scholar 

  • Gibson RM, Bradbury JW, Vehrencamp SL. Mate choice in lekking sage grouse revisited: the roles of vocal display, female site fidelity and copying. Behav Ecol. 1991;2:165–80.

    Google Scholar 

  • Gibson RM, Pires D, Delaney KS, Wayne RK. Microsatellite DNA analysis shows that greater sage-grouse leks are not kin groups. Mol Ecol. 2005;14:4453–9.

    CAS  PubMed  Google Scholar 

  • Green AW, Aldridge CL, O’Donnell MS. Investigating impacts of oil and gas development on greater sage-grouse. J Wildl Manag. 2017;81:46–57.

    Google Scholar 

  • Gunnison Sage-grouse Rangewide Steering Committee (GSRSC). Gunnison sage-grouse rangewide conservation plan. Denver: Colorado Division of Wildlife; 2005.

    Google Scholar 

  • Hedrick PW. A standardized genetic differentiation measure. Evolution. 2005;59:1633–8.

    CAS  PubMed  Google Scholar 

  • Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population genomics provides key insights in ecology and evolution. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 483–510.

    Google Scholar 

  • Hupp JW, Braun CE. Geographic variation among sage grouse in Colorado. Wilson Bull. 1991;103:255–61.

    Google Scholar 

  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.

    Google Scholar 

  • Isaksson C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or co** with urban environmental stress. Funct Ecol. 2015;29:913–23.

    Google Scholar 

  • Jahner JP, Gibson D, Weitzman CL, Bloomberg EJ, Sedinger JS, Parchman TL. Fine scale genetic structure among greater sage-grouse leks in Central Nevada. BMC Evol Biol. 2016;16:127.

    PubMed  PubMed Central  Google Scholar 

  • Jankowski MD, Wittwer DJ, Heisey DM, Franson JC, Hofmeister EK. The adrenocortical response of greater sage-grouse (Centrocercus urophasianus) to capture ACTH injection, and confinement, as measured in fecal samples. Physiol Biochem Zool. 2009;82:190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowski MD, Russell RE, Franson JC, Dusek RJ, Hines MK, Gree M, Hofmeister EK. Corticosterone metaboloite concentrations in greater sage-grouse are positively associated with the presence of cattle grazing. Rangeland Ecol Manag. 2014;67:237–46.

    Google Scholar 

  • Jarman SN, Deagle BE, Gales NJ. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol. 2004;13:1313–22.

    CAS  PubMed  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.

    CAS  PubMed  Google Scholar 

  • Johnsgard PA. The grouse of the world. Lincoln: University of Nebraska Press; 1983.

    Google Scholar 

  • Johnson GD, Boyce MS. Survival, growth, and reproduction of captive reared sage grouse. Wildl Soc Bull. 1991;18:88–93.

    Google Scholar 

  • Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.

    PubMed  Google Scholar 

  • Jost L. GST and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26.

    PubMed  Google Scholar 

  • Kahn NW, Braun CE, Young JR, Wood S, Mata DR, Quinn TW. Molecular analysis of genetic variation among large- and small-bodied Sage Grouse using mitochondrial control-region sequences. Auk. 1999;116:819–24.

    Google Scholar 

  • Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015;115:63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA. diveRsity: an R package for the estimation of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4:782–8.

    Google Scholar 

  • Kelsey RG, Stephens JR, Shafizadeh F. The chemical constituents of sagebrush foliage and their isolation. J Range Manag. 1982;35:617–22.

    CAS  Google Scholar 

  • Kleist NJ, Guralnick RP, Cruz A, Lowry CA, Francis CD. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc Natl Acad Sci. 2018;115:E648–57.

    CAS  PubMed  Google Scholar 

  • Knick ST, Connely JW. Greater sage-grouse: ecology and conservation of a landscape species and its habitats, Studies in avian biology, vol. 38. Berkley: University of California Press; 2011.

    Google Scholar 

  • Knick ST, Dobkin DS, Rotenberry JT, Schroeder MA, Vander Haegen WM, van Ripper C III. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats. Condor. 2003;105:611–34.

    Google Scholar 

  • Kohl KD, Pitman E, Robb BC, Connelly JW, Dearing MD, Forbey JS. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore. J Comp Physiol B. 2015;185:425–34.

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB. Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;4:1812–9.

    Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 3–79.

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.

    Google Scholar 

  • Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.

    CAS  PubMed  Google Scholar 

  • Meirmans PG. The trouble with isolation by distance. Mol Ecol. 2012;21:2839–46.

    PubMed  Google Scholar 

  • Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    CAS  PubMed  Google Scholar 

  • Miller RF, Knick ST, Pyke DA, Meike CW, Hanser SE, Wisdom MJ, Hild AL. Characteristics of sagebrush habitats and limitations to long-term conservation. In: Knick SJ, Connelly JW, editors. Greater sage-grouse: ecology and conservation of a landscape species and its habitats, Studies in avian biology, vol. 38. Berkley: University of California Press; 2011. p. 145–84.

    Google Scholar 

  • Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance SJ, Dunn PO. Contrasting evolutionary histories of MHC class I and class II loci in grouse – effects of selection and gene conversion. Heredity. 2016;116:466–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance SJ, Dunn PO. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie-grouse. Immunogenetics. 2018;70:195–204.

    CAS  PubMed  Google Scholar 

  • Monroe AP, Aldridge CL, Assal TJ, Veblen KE, Pyke DA, Casazza ML. Patterns in greater sage-grouse population dynamics correspond with public grazing records at broad scales. Ecol Appl. 2017;27:1096–107.

    PubMed  Google Scholar 

  • Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JBW, Backström N, Künstner A, Balakrishnan CN, Heger A, Ponting CP, Clayton DF, Ellegren H. Molecular evolution of genes in avian genomes. Genome Biol. 2010;11:R68.

    PubMed  PubMed Central  Google Scholar 

  • Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.

    Google Scholar 

  • Oh KP, Aldridge CL, Forbey JS, Dadabay CY, Oyler-McCance SJ. Genomic insights into neutral and adaptive variation in sage-grouse: implications for ecology and conservation. Genome Biol Evol. 2019;11:2023–2034.

    Google Scholar 

  • Oyler-McCance SJ, Kahn NW, Burnham KP, Braun CE, Quinn TW. A population genetic comparison of large- and small-bodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers. Mol Ecol. 1999;8:1457–65.

    CAS  PubMed  Google Scholar 

  • Oyler-McCance SJ, Burnham KP, Braun CE. Influence of changes in sagebrush on Gunnison sage grouse in southwestern Colorado. Southwest Nat. 2001;46:323–31.

    Google Scholar 

  • Oyler-McCance SJ, Taylor SE, Quinn TW. A multilocus population genetic survey of the greater sage-grouse across their range. Mol Ecol. 2005a;14:1293–310.

    CAS  PubMed  Google Scholar 

  • Oyler-McCance SJ, St. John J, Taylor SE, Apa AD, Quinn TQ. Population genetics of Gunnison sage-grouse: implications for management. J Wildl Manag. 2005b;69:630–7.

    Google Scholar 

  • Oyler-McCance SJ, St. John J, Quinn TW. Rapid evolution in lekking grouse. Ornithol Monogr. 2010;67:114–22.

    Google Scholar 

  • Oyler-McCance SJ, Casazza ML, Fike JA, Coates PS. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse. Conserv Genet. 2014;15:1299–311.

    Google Scholar 

  • Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Genomic single-nucleotide polymorphisms confirm that Gunnison and greater sage-grouse are genetically well differentiated and that the bi-state population is distinct. Condor. 2015a;117:217–27.

    Google Scholar 

  • Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds. Heredity. 2015b;115:452–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oyler-McCance SJ, Oh KP, Langin KM, Aldridge CL. A field ornithologist’s guide to genomics: practical considerations for ecology and conservation. Auk Ornithol Adv. 2016;4:626–48.

    Google Scholar 

  • Panhuis TM, Butlin R, Zuk M, Tregenza T. Sexual selection and speciation. Trends Ecol Evol. 2001;16:364–71.

    PubMed  Google Scholar 

  • Patterson RL. The sage grouse in Wyoming. Denver: Sage Books; 1952.

    Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Mol Ecol. 2012;21:1931–50.

    CAS  PubMed  Google Scholar 

  • Pyrah DB. Sage chickens in captivity. Game Bird Breed Pheas Fanciers Avicultur Gaz. 1964;13:10–1.

    Google Scholar 

  • Remington TE, Braun CE. Sage grouse food selection in winter, North Park, Colorado. J Wildl Manag. 1985;49:1055–61.

    Google Scholar 

  • Row JR, Blouin-Demers G, Lougheed SC. Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol Ecol. 2010;19:5157–71.

    PubMed  Google Scholar 

  • Row JR, Oyler-McCance SJ, Fike JA, O’Donnell MS, Doherty KE, Aldridge CL, Bowen ZH, Fedy BC. Landscape characteristics influencing the genetic structure of greater sage-grouse within the stronghold of their range: a holistic modeling approach. Ecol Evol. 2015;5:1955–69.

    PubMed  PubMed Central  Google Scholar 

  • Row JR, Oyler-McCance SJ, Fedy BC. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus). Mol Ecol. 2016;25:4424–37.

    PubMed  Google Scholar 

  • Row JR, Doherty K, Cross T, Schwartz M, Oyler-McCance SJ, Naugle D, Knick ST, Fedy B. Quantifying functional connectivity: the role of breeding habitat, abundance, and landscape features on range-wide gene flow in sage-grouse. Evol Appl. 2018;11:1305–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savolainen O, Lascoux M, Merila J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807–20.

    CAS  PubMed  Google Scholar 

  • Schroeder MA. Variation in greater sage-grouse morphology by region and population. Spokane: US Fish and Wildlife Service Report; 2008.

    Google Scholar 

  • Schroeder MA, Hays DW, Livingston MF, Stream LE, Jacobson JE, Pierce DJ. Changes in the distribution and abundance of sage grouse in Washington. Northwest Nat. 2000;81:104–12.

    Google Scholar 

  • Schroeder MA, Aldridge CL, Apa AD, Bohne JR, Braun CE, Bunnel SD, Connelly JW, Deibert PA, Gardner SC, Hilliard MA, Kobringer GD, McAdam SM, McCarthy CW, McCarthy JJ, Mitchell DL, Rickerson EV, Stiver SJ. Distribution of sage-grouse in North America. Condor. 2004;106:363–76.

    Google Scholar 

  • Schulwitz S, Bedrosian B, Johnson JA. Low anonymous genetic diversity in isolated greater sage-grouse (Centrocercus urophasianus) populations in northwest Wyoming. Condor Ornith Appl. 2014;116:560–73.

    Google Scholar 

  • Semple K, Wayne RK, Gibson RM. Microsatellite analysis of female mating behavior in lek-breeding sage grouse. Mol Ecol. 2001;10:2043–8.

    CAS  PubMed  Google Scholar 

  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotech. 2008;26:1135–45.

    CAS  Google Scholar 

  • Shirk AJ, Schroeder MA, Robb LA, Cushman SA. Empirical validation of landscape resistance models: insights from the greater sage-grouse (Centrocercus urophasianus). Landsc Ecol. 2015;30(10):1837–50. https://doi.org/10.1007/s10980-015-0214-4.

    Article  Google Scholar 

  • Shyvers JL, Walker BL, Oyler-McCance SJ, Fike JA, Noon BR. Genetic mark-recapture analysis of winter faecal pellets allows estimation of population size in Sage Grouse Centrocercus urophasianus. Ibis. 2019 (in press).

    Google Scholar 

  • Spaulding A. Rapid courtship evolution in grouse (Tetraonidae): contrasting patterns of acceleration between the Eurasian and North American polygynous clades. Proc R Soc London B. 2007;274:1079–86.

    Google Scholar 

  • Steiner CC, Putnam AS, Hoeck PEA, Ryder OA. Conservation genomics of threatened animal species. Annu Rev Anim Biosci. 2013;1:261–81.

    PubMed  Google Scholar 

  • Stiver JR, Apa AD, Remington TE, Gibson RM. Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biol Conserv. 2008;141:472–81.

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP. Putting the “landscape” in landscape genetics. Heredity. 2007;98:128–42.

    CAS  PubMed  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7:453–64.

    CAS  PubMed  Google Scholar 

  • Taylor SE, Young JR. A comparative behavioral study of three greater sage-grouse populations. Wilson J Ornithol. 2006;118:36–41.

    Google Scholar 

  • Thompson TR, Apa AD, Reese KP, Tadvick KM. Captive rearing sage-grouse for augmentation of surrogate wild broods: evidence for success. J Wildl Manag. 2015;79:998–1013.

    Google Scholar 

  • USFWS. Endangered and threatened wildlife and plants; determination for the Gunnison Sage-grouse as a threatened or endangered species. Fed Regist. 2014;79:69192–310.

    Google Scholar 

  • Uy JAC, Borgia G. Sexual selection drives rapid divergence in bowerbird display traits. Evolution. 2000;63:153–64.

    Google Scholar 

  • Waits LP, Storfer A. Basics of population genetics: quantifying neutral and adaptive genetic variation for landscape genetic studies. In: Balkenhol N, Cushman SA, editors. Landscape genetics: concepts, methods, applications. Hoboken: Wiley; 2016. p. 35–57.

    Google Scholar 

  • Wallestad R, Peterson JG, Eng RL. Foods of adult sage grouse in central Montana. J Wildl Manag. 1975;39:628–30.

    Google Scholar 

  • Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.

    CAS  PubMed  Google Scholar 

  • Welch BL, Pederson JC, Rodriquez RL. Selection of big sagebrush by sage grouse. Great Basin Nat. 1988;48:274–9.

    Google Scholar 

  • West NE. Western intermountain sagebrush steppe. In: West NE, editor. Ecosystems of the world, Temperate deserts and semi-deserts, vol. 5. New York: Elsevier; 1983. p. 331–49.

    Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN. Tracking the long-term decline and recovery of an isolated population. Science. 1998;282:1695–8.

    CAS  PubMed  Google Scholar 

  • Wiley RH. Evolution of social organization and life-history patterns among grouse. Q Rev Biol. 1974;49:201–27.

    CAS  PubMed  Google Scholar 

  • Willing E-M, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLOS One. 2012;7:1–7.

    Google Scholar 

  • Wittenberger JF. The evolution of mating systems in grouse. Condor. 1978;80:126–37.

    Google Scholar 

  • Young JR, Hupp JW, Bradbury JW, Braun CE. Phenotypic divergence of secondary sexual traits among sage grouse populations. Anim Behav. 1994;47:1353–62.

    Google Scholar 

  • Young JR, Braun CE, Oyler-McCance SJ, Hupp JW, Quinn TW. A new species of sage-grouse (Pahsianidae: Centrocercus) from southwestern Colorado. Wilson Bull. 2000;112:445–53.

    Google Scholar 

  • Zimmerman, SJ. Genetics, genomics, grouse, and conservation: use of genetic and genomic data to evaluate conservation actions and characterize popualtions of Gunnison Sage-grouse. PhD dissertation, Colorado State University, Fort Collins; 2019.

    Google Scholar 

  • Zimmerman SJ, Aldridge CL, Apa AD, Oyler-McCance SJ. Evaluation of the genetic change from translocation among Gunnison Sage-grouse (Centrocercus minimus) populations. Condor. 2019a;121:1–14.

    Google Scholar 

  • Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. Signatures of adaptive divergence among populations of an avian species of conservation concern. Evol Appl. 2019b; https://doi.org/10.1111/eva.12825.

Download references

Acknowledgments

We thank M. Schroeder, J. Fike, and the editors of this volume for their helpful comments on this chapter and J. Saher for her help with figures. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara J. Oyler-McCance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyler-McCance, S.J., Oh, K.P., Zimmerman, S.J., Aldridge, C.L. (2020). The Transformative Impact of Genomics on Sage-Grouse Conservation and Management. In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2019_65

Download citation

  • DOI: https://doi.org/10.1007/13836_2019_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation