Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering

  • Chapter
  • First Online:
Peptide-Based Materials

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 310))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

A:

Alanine

Ac:

Acetyl

ATRP:

Atom transfer radical polymerization

Boc:

tert-Butoxycarbonyl

C:

Cysteine

D:

Aspartic acid

E:

Glutamic acid

ECM:

Extracellular matrix

ELP:

Elastin-like peptide

F:

Phenylalanine

Fmoc:

9-Fluofluorenylmethoxycarbonyl

G:

Glycine

H:

Histidine

I:

Isoleucine

K:

Lysine

L:

Leucine

N:

Asparagine

P:

Proline

PA:

Peptide amphiphile

PAA:

Poly(acrylic acid)

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PVA:

Poly(vinyl alcohol)

Q:

Glutamine

R:

Arginine

S:

Serine

SPPS:

Solid-phase peptide synthesis

T:

Threonine

V:

Valine

W:

Tryptophan

Y:

Tyrosine

References

  1. Dujardin E, Mann S (2002) Bio-inspired materials chemistry. Adv Mater 14:775–788

    Article  CAS  Google Scholar 

  2. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  3. Foo CWP, Huang J, Kaplan DL (2004) Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol 22:577–585

    Article  CAS  Google Scholar 

  4. Sundar VC, Yablon AD, Grazul JL et al (2003) Fibre-optical features of a glass sponge – some superior technological secrets have come to light from a deep- sea organism. Nature 424:899–900

    Article  CAS  Google Scholar 

  5. Murphy WL, Mooney DJ (2002) Molecular-scale biomimicry. Nat Biotechnol 20:30–31

    Article  CAS  Google Scholar 

  6. Pradhan S, Farach-Carson MC (2010) Mining the extracellular matrix for tissue engineering applications. Regen Med 5:961–970

    Article  CAS  Google Scholar 

  7. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell-adhesion - RGD and integrins. Science 238:491–497

    Article  CAS  Google Scholar 

  8. Keeley FW, Bellingham CM, Woodhouse KA (2002) Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin. Philos Trans R Soc Lond B Biol Sci 357:185–189

    Article  CAS  Google Scholar 

  9. Mitra A, Mulholland J, Nan A et al (2005) Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release 102:191–201

    Article  CAS  Google Scholar 

  10. Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323

    Article  CAS  Google Scholar 

  11. VandeVondele S, Voros J, Hubbell JA (2003) Rgd-grafted poly-l-lysine-graft- (polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 82:784–790

    Article  CAS  Google Scholar 

  12. Amblard M, Fehrentz J, Martinez J et al (2005) Peptide synthesis and applications. In: Howl J (ed) Springer protocols. Humana Press, Totowa

    Google Scholar 

  13. Gauthier MA, Klok HA (2008) Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chem Commun 23:2591–2611

    Article  CAS  Google Scholar 

  14. Guzman F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10:279–314

    Article  CAS  Google Scholar 

  15. Kiick KL (2007) Biosynthetic methods for the production of advanced protein-based materials. Polym Rev 47:1–7

    Article  CAS  Google Scholar 

  16. Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–593

    Article  CAS  Google Scholar 

  17. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118

    Article  CAS  Google Scholar 

  18. Adams DJ, Topham PD (2010) Peptide conjugate hydrogelators. Soft Matter 6:3707–3721

    Article  CAS  Google Scholar 

  19. Kramer JR, Deming TJ (2010) Glycopolypeptides via living polymerization of glycosylated-l-lysine n-carboxyanhydrides. J Am Chem Soc 132:15068–15071

    Article  CAS  Google Scholar 

  20. Top A, Kiick KL (2010) Multivalent protein polymers with controlled chemical and physical properties. Adv Drug Deliv Rev 62:1530–1540

    Article  CAS  Google Scholar 

  21. van Hest JCM, Tirrell DA (2001) Protein-based materials, toward a new level of structural control. Chem Commun 19:1897–1904

    Article  CAS  Google Scholar 

  22. Wang L, **e J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  CAS  Google Scholar 

  23. Tiefenbrunn TK, Dawson PE (2010) Chemoselective ligation techniques: modern applications of time-honored chemistry. Biopolymers 94:95–106

    Article  CAS  Google Scholar 

  24. Reynhout IC, Lowik D, van Hest JCM et al (2005) Solid phase synthesis of biohybrid block copolymers. Chem Commun 602–604

    Google Scholar 

  25. Mei Y, Beers KL, Byrd HCM et al (2004) Solid-phase atrp synthesis of peptide- polymer hybrids. J Am Chem Soc 126:3472–3476

    Article  CAS  Google Scholar 

  26. Loschonsky S, Shroff K, Worz A et al (2008) Surface-attached pdmaa-grgdsp hybrid polymer monolayers that promote the adhesion of living cells. Biomacromolecules 9:543–552

    Article  CAS  Google Scholar 

  27. Peppas NA, Huang Y, Torres-Lugo M et al (2000) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  28. Nowak AP, Breedveld V, Pakstis L et al (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428

    Article  CAS  Google Scholar 

  29. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  30. Romano NH, Sengupta D, Chung C et al (2010) Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim Biophys Acta 1810:339–349

    Article  CAS  Google Scholar 

  31. Freed LE, Engelmayr GC, Borenstein JT et al (2009) Advanced material strategies for tissue engineering scaffolds. Adv Mater 21:3410–3418

    Article  CAS  Google Scholar 

  32. Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33:94–101

    Article  CAS  Google Scholar 

  33. Lanza RP, Langer R, Vacanti J (2007) Principles of tissue engineering. Academic, San Diego

    Google Scholar 

  34. Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A 15:205–219

    Article  CAS  Google Scholar 

  35. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3d cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  Google Scholar 

  36. Liu WF, Chen CS (2005) Engineering biomaterials to control cell function. Mater Today 8:28–35

    Article  Google Scholar 

  37. Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. In: Bonifacino JS (ed) Current protocols in cell biology. Wiley, Somerset

    Google Scholar 

  38. Bettinger CJ, Weinberg EJ, Kulig KM et al (2006) Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169

    Article  CAS  Google Scholar 

  39. Bowman CN, Kloxin CJ (2008) Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE J 54:2775–2795

    Article  CAS  Google Scholar 

  40. Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41:749–759

    Article  CAS  Google Scholar 

  41. Yamamoto M, Tabata Y, Ikada Y (1999) Growth factor release from gelatin hydrogel for tissue engineering. J Bioact Compat Polym 14:474–489

    CAS  Google Scholar 

  42. Young S, Wong M, Tabata Y et al (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274

    Article  CAS  Google Scholar 

  43. Farmer RS, Kiick KL (2005) Conformational behavior of chemically reactive alanine-rich repetitive protein polymers. Biomacromolecules 6:1531–1539

    Article  CAS  Google Scholar 

  44. Hirano Y, Mooney DJ (2004) Peptide and protein presenting materials for tissue engineering. Adv Mater 16:17–25

    Article  CAS  Google Scholar 

  45. Lamm MS, Sharma N, Rajagopal K et al (2008) Laterally spaced linear nanoparticle arrays templated by laminated beta-sheet fibrils. Adv Mater 20:447–451

    Article  CAS  Google Scholar 

  46. Liu S, Kiick KL (2008) Architecture effects on the binding of cholera toxin by helical glycopolypeptides. Macromolecules 41:764–772

    Article  CAS  Google Scholar 

  47. Sharma N, Top A, Kiick KL et al (2009) One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly. Angew Chem Int Ed 48:7078–7082

    Article  CAS  Google Scholar 

  48. Collier JH, Messersmith PB (2004) Self-assembling polymer-peptide conjugates: nanostructural tailoring. Adv Mater 16:907–910

    Article  CAS  Google Scholar 

  49. Hamley IW, Ansari A, Castelletto V et al (2005) Solution self-assembly of hybrid block copolymers containing poly(ethylene glycol) and amphiphilic beta-strand peptide sequences. Biomacromolecules 6:1310–1315

    Article  CAS  Google Scholar 

  50. Hentschel J, Krause E, Borner HG (2006) Switch-peptides to trigger the peptide guided assembly of poly(ethylene oxide)-peptide conjugates into tape structures. J Am Chem Soc 128:7722–7723

    Article  CAS  Google Scholar 

  51. Minh KN, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579

    Article  CAS  Google Scholar 

  52. Yan CQ, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39:3528–3540

    Article  CAS  Google Scholar 

  53. Rughani RV, Branco MC, Pochan D et al (2010) De novo design of a shear-thin recoverable peptide-based hydrogel capable of intrafibrillar photopolymerization. Macromolecules 43:7924–7930

    Article  CAS  Google Scholar 

  54. Sallach RE, Cui W, Wen J et al (2009) Elastin-mimetic protein polymers capable of physical and chemical crosslinking. Biomaterials 30:409–422

    Article  CAS  Google Scholar 

  55. Aulisa L, Dong H, Hartgerink JD (2009) Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10:2694–2698

    Article  CAS  Google Scholar 

  56. Miao M, Cirulis JT, Lee S et al (2005) Structural determinants of cross- linking and hydrophobic domains for self-assembly of elastin-like polypeptides. Biochemistry 44:14367–14375

    Article  CAS  Google Scholar 

  57. Grzybowski BA, Wilmer CE, Kim J et al (2009) Self-assembly: from crystals to cells. Soft Matter 5:1110–1128

    Article  CAS  Google Scholar 

  58. McMillan RA, Conticello VP (2000) Synthesis and characterization of elastin- mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules 33:4809–4821

    Article  CAS  Google Scholar 

  59. Alberts B, Bray D, Lewis J et al (1994) Molecular biology of the cell. Garland, New York

    Google Scholar 

  60. Kopecek J, Yang JY (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816

    Article  CAS  Google Scholar 

  61. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 99:4769–4774

    Article  CAS  Google Scholar 

  62. Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596

    Article  CAS  Google Scholar 

  63. Gunasekaran K, Ramakrishnan C, Balaram P (1997) Beta-hairpins in proteins revisited: lessons for de novo design. Protein Eng 10:1131–1141

    Article  CAS  Google Scholar 

  64. Blanco FJ, Jimenez MA, Herranz J et al (1993) Nmr evidence of a short linear peptide that folds into a beta-hairpin in aqueous-solution. J Am Chem Soc 115:5887–5888

    Article  CAS  Google Scholar 

  65. Haque TS, Little JC, Gellman SH (1994) Mirror-image reverse turns promote beta- hairpin formation. J Am Chem Soc 116:4105–4106

    Article  CAS  Google Scholar 

  66. Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    Article  CAS  Google Scholar 

  67. Presta LG, Rose GD (1988) Helix signals in proteins. Science 240:1632–1641

    Article  CAS  Google Scholar 

  68. Lyu PC, Liff MI, Marky LA et al (1990) Side-chain contributions to the stability of alpha-helical structure in peptides. Science 250:669–673

    Article  CAS  Google Scholar 

  69. Oneil KT, Degrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino-acids. Science 250:646–651

    Article  CAS  Google Scholar 

  70. Liu W, Jawerth LM, Sparks EA et al (2006) Fibrin fibers have extraordinary extensibility and elasticity. Science 313:634–634

    Article  CAS  Google Scholar 

  71. Piechocka IK, Bacabac RG, Potters M et al (2010) Structural hierarchy governs fibrin gel mechanics. Biophys J 98:2281–2289

    Article  CAS  Google Scholar 

  72. Brown AEX, Litvinov RI, Discher DE et al (2007) Forced unfolding of the coiled- coils of fibrinogen by single molecule afm. Biophys J 92:L39–L42

    Article  CAS  Google Scholar 

  73. Fong JH, Keating AE, Singh M (2004) Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol 5:R11

    Article  Google Scholar 

  74. Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of alpha-helical coiled coil nanofibers. J Am Chem Soc 130:13691–13695

    Article  CAS  Google Scholar 

  75. Liu J, Zheng Q, Deng YQ et al (2006) A seven-helix coiled coil. Proc Natl Acad Sci 103:15457–15462

    Article  CAS  Google Scholar 

  76. Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper – a hypothetical structure common to a new class of DNA-binding proteins. Science 240:1759–1764

    Article  CAS  Google Scholar 

  77. Petka WA, Harden JL, McGrath KP et al (1998) Reversible hydrogels from self- assembling artificial proteins. Science 281:389–392

    Article  CAS  Google Scholar 

  78. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  CAS  Google Scholar 

  79. Shen W (2005) Structure, dynamics, and properties of artificial protein hydrogels assembled through coiled-coil domains. California Institute of Technology, Pasadena

    Google Scholar 

  80. Shen W, Zhang KC, Kornfield JA et al (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5:153–158

    Article  CAS  Google Scholar 

  81. Ryan SJ, Kennan AJ (2007) Variable stability heterodimeric coiled-coils from manipulation of electrostatic interface residue chain length. J Am Chem Soc 129:10255–10260

    Article  CAS  Google Scholar 

  82. Mi LX, Fischer S, Chung B et al (2006) Self-assembling protein hydrogels with modular integrin binding domains. Biomacromolecules 7:38–47

    Article  CAS  Google Scholar 

  83. Cao Y, Li HB (2008) Engineering tandem modular protein based reversible hydrogels. Chem Commun 4144–4146

    Google Scholar 

  84. Liu B, Lewis AK, Shen W (2009) Physical hydrogels photo-cross-linked from self- assembled macromers for potential use in tissue engineering. Biomacromolecules 10:3182–3187

    Article  CAS  Google Scholar 

  85. Vandermeulen GWM, Tziatzios C, Duncan R et al (2005) Peg-based hybrid block copolymers containing alpha-helical coiled coil peptide sequences: control of self- assembly and preliminary biological evaluation. Macromolecules 38:761–769

    Article  CAS  Google Scholar 

  86. Banwell EF, Abelardo ES, Adams DJ et al (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600

    Article  CAS  Google Scholar 

  87. Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567

    Article  CAS  Google Scholar 

  88. Makin OS, Atkins E, Sikorski P et al (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci 102:315–320

    Article  CAS  Google Scholar 

  89. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275

    Article  CAS  Google Scholar 

  90. Parkhe AD, Seeley SK, Gardner K (1997) Structural studies of spider silk proteins in the fiber. J Mol Recognit 10:1–6

    Article  CAS  Google Scholar 

  91. Slotta U, Hess S, Spiess K et al (2007) Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci 7:183–188

    Article  CAS  Google Scholar 

  92. Matsumoto A, Chen J, Collette AL et al (2006) Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 110:21630–21638

    Article  CAS  Google Scholar 

  93. Brack A, Orgel LE (1975) Beta-structures of alternating polypeptides and their possible prebiotic significance. Nature 256:383–387

    Article  CAS  Google Scholar 

  94. Brack A, Spach G (1981) Multiconformational synthetic polypeptides. J Am Chem Soc 103:6319–6323

    Article  CAS  Google Scholar 

  95. **ong HY, Buckwalter BL, Shieh HM et al (1995) Periodicity of polar and nonpolar amino-acids is the major determinant of secondary structure in self- assembling oligomeric peptides. Proc Natl Acad Sci 92:6349–6353

    Article  CAS  Google Scholar 

  96. Aggeli A, Bell M, Boden N et al (1997) Engineering of peptide beta-sheet nanotapes. J Mater Chem 7:1135–1145

    Article  CAS  Google Scholar 

  97. Aggeli A, Bell M, Boden N et al (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386:259–262

    Article  CAS  Google Scholar 

  98. Yang JJ, Pitkeathly M, Radford SE (1994) Far-uv circular-dichroism reveals a conformational switch in a peptide fragment from the beta-sheet of hen lysozyme. Biochemistry 33:7345–7353

    Article  CAS  Google Scholar 

  99. Zhang SG, Lockshin C, Herbert A et al (1992) Zuotin, a putative z-DNA binding- protein in saccharomyces-cerevisiae. EMBO J 11:3787–3796

    CAS  Google Scholar 

  100. Zhang SG, Holmes T, Lockshin C et al (1993) Spontaneous assembly of a self- complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90:3334–3338

    Article  CAS  Google Scholar 

  101. Semino CE, Kasahara J, Hayashi Y et al (2004) Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 10:643–655

    Article  CAS  Google Scholar 

  102. Semino CE, Merok JR, Crane GG et al (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three- dimensional peptide scaffolds. Differentiation 71:262–270

    Article  CAS  Google Scholar 

  103. Holmes TC, de Lacalle S, Su X et al (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci 97:6728–6733

    Article  CAS  Google Scholar 

  104. Zhang SG (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339

    Article  CAS  Google Scholar 

  105. Collier JH, Hu BH, Ruberti JW et al (2001) Thermally and photochemically triggered self-assembly of peptide hydrogels. J Am Chem Soc 123:9463–9464

    Article  CAS  Google Scholar 

  106. Schneider JP, Pochan DJ, Ozbas B et al (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037

    Article  CAS  Google Scholar 

  107. Ozbas B, Kretsinger J, Rajagopal K et al (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37:7331–7337

    Article  CAS  Google Scholar 

  108. Pochan DJ, Schneider JP, Kretsinger J et al (2003) Thermally reversible hydrogels via intramolecular folding and consequent self- assembly of a de novo designed peptide. J Am Chem Soc 125:11802–11803

    Article  CAS  Google Scholar 

  109. Rajagopal K, Ozbas B, Pochan DJ et al (2005) Self-assembled hydrogels from beta- hairpin peptides: tuning responsiveness and bulk material properties by peptide design. Biopolymers 80:487–487

    Google Scholar 

  110. Kretsinger JK, Haines LA, Ozbas B et al (2005) Cytocompatibility of self-assembled ss-hairpin peptide hydrogel surfaces. Biomaterials 26:5177–5186

    Article  CAS  Google Scholar 

  111. Rajagopal K, Ozbas B, Pochan DJ et al (2006) Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Eur Biophys J Biophys Lett 35:162–169

    Article  CAS  Google Scholar 

  112. Yucel T, Micklitsch CM, Schneider JP et al (2008) Direct observation of early-time hydrogelation in beta-hairpin peptide self-assembly. Macromolecules 41:5763–5772

    Article  CAS  Google Scholar 

  113. Haines-Butterick L, Rajagopal K, Branco M et al (2007) Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci 104:7791–7796

    Article  CAS  Google Scholar 

  114. Rajagopal K, Lamm MS, Haines-Butterick LA et al (2009) Tuning the ph responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10:2619–2625

    Article  CAS  Google Scholar 

  115. Haines-Butterick LA, Salick DA, Pochan DJ et al (2008) In vitro assessment of the pro-inflammatory potential of beta-hairpin peptide hydrogels. Biomaterials 29:4164–4169

    Article  CAS  Google Scholar 

  116. Hule RA, Nagarkar RP, Altunbas A et al (2008) Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels. Faraday Discuss 139:251–264

    Article  CAS  Google Scholar 

  117. Yan CQ, Altunbas A, Yucel T et al (2010) Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6:5143–5156

    Article  CAS  Google Scholar 

  118. Salick DA, Kretsinger JK, Pochan DJ et al (2007) Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 129:14793–14799

    Article  CAS  Google Scholar 

  119. Branco M, Wagner N, Pochan D et al (2009) Release of model macromolecules from self-assembling peptide hydrogels for injectable delivery. Biopolymers 92:318–318

    Google Scholar 

  120. Ramachandran S, Tseng Y, Yu YB (2005) Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 6:1316–1321

    Article  CAS  Google Scholar 

  121. Niece KL, Hartgerink JD, Donners J et al (2003) Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 125:7146–7147

    Article  CAS  Google Scholar 

  122. Macias MJ, Gervais V, Civera C et al (2000) Structural analysis of ww domains and design of a ww prototype. Nat Struct Biol 7:375–379

    Article  CAS  Google Scholar 

  123. Foo C, Lee JS, Mulyasasmita W et al (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci 106:22067–22072

    Article  CAS  Google Scholar 

  124. Vegners R, Shestakova I, Kalvinsh I et al (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1:371–378

    Article  CAS  Google Scholar 

  125. Zhang Y, Gu HW, Yang ZM et al (2003) Supramolecular hydrogels respond to ligand-receptor interaction. J Am Chem Soc 125:13680–13681

    Article  CAS  Google Scholar 

  126. Jayawarna V, Ali M, Jowitt TA et al (2006) Nanostructured hydrogels for three- dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl- dipeptides. Adv Mater 18:611–614

    Article  CAS  Google Scholar 

  127. Liebmann T, Rydholm S, Akpe V et al (2007) Self-assembling fmoc dipeptide hydrogel for in situ 3d cell culturing. BMC Biotechnol 7:88

    Article  CAS  Google Scholar 

  128. Mahler A, Reches M, Rechter M et al (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18:1365–1370

    Article  CAS  Google Scholar 

  129. Smith AM, Williams RJ, Tang C et al (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets. Adv Mater 20:37–41

    Article  CAS  Google Scholar 

  130. Zhou M, Smith AM, Das AK et al (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530

    Article  CAS  Google Scholar 

  131. Yang ZM, Liang GL, Ma ML et al (2007) Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. J Mater Chem 17:850–854

    Article  CAS  Google Scholar 

  132. Anderson JM, Andukuri A, Lim DJ et al (2009) Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano 3:3447–3454

    Article  CAS  Google Scholar 

  133. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  CAS  Google Scholar 

  134. Lowik D, Shklyarevskiy IO, Ruizendaal L et al (2007) A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv Mater 19:1191–1195

    Article  CAS  Google Scholar 

  135. Stendahl JC, Rao MS, Guler MO et al (2006) Intermolecular forces in the self- assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508

    Article  CAS  Google Scholar 

  136. Niece KL, Czeisler C, Sahni V et al (2008) Modification of gelation kinetics in bioactive peptide amphiphiles. Biomaterials 29:4501–4509

    Article  CAS  Google Scholar 

  137. Beniash E, Hartgerink JD, Storrie H et al (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1:387–397

    Article  Google Scholar 

  138. Bull SR, Guler MO, Bras RE et al (2005) Magnetic resonance imaging of self- assembled biomaterial scaffolds. Bioconjug Chem 16:1343–1348

    Article  CAS  Google Scholar 

  139. Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  Google Scholar 

  140. Standley SM, Toft DJ, Cheng H et al (2010) Induction of cancer cell death by self- assembling nanostructures incorporating a cytotoxic peptide. Cancer Res 70:3020–3026

    Article  CAS  Google Scholar 

  141. Zhang SM, Greenfield MA, Mata A et al (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9:594–601

    Article  CAS  Google Scholar 

  142. Deming TJ (2010) Regenerative medicine noodle gels for cells. Nat Mater 9:535–536

    Article  CAS  Google Scholar 

  143. Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth-factor family of proteins. Annu Rev Biochem 58:575–606

    Article  CAS  Google Scholar 

  144. Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth-factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  Google Scholar 

  145. Rajangam K, Behanna HA, Hui MJ et al (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6:2086–2090

    Article  CAS  Google Scholar 

  146. Cardin AD, Weintraub HJR (1989) Molecular modeling of protein- glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    Article  CAS  Google Scholar 

  147. Lamm MS, Rajagopal K, Schneider JP et al (2005) Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly. J Am Chem Soc 127:16692–16700

    Article  CAS  Google Scholar 

  148. Yang CY, Song BB, Ao Y et al (2009) Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 30:2881–2898

    Article  CAS  Google Scholar 

  149. Betre H, Ong SR, Guilak F et al (2006) Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27:91–99

    Article  CAS  Google Scholar 

  150. Arias FJ, Reboto V, Martin S et al (2006) Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications. Biotechnol Lett 28:687–695

    Article  CAS  Google Scholar 

  151. Reiersen H, Clarke AR, Rees AR (1998) Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering. J Mol Biol 283:255–264

    Article  CAS  Google Scholar 

  152. Ayres L, Vos MRJ, Adams P et al (2003) Elastin-based side-chain polymers synthesized by atrp. Macromolecules 36:5967–5973

    Article  CAS  Google Scholar 

  153. Nettles DL, Chilkoti A, Setton LA (2010) Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 62:1479–1485

    Article  CAS  Google Scholar 

  154. Yamaoka T, Tamura T, Seto Y et al (2003) Mechanism for the phase transition of a genetically engineered elastin model peptide (vpgig)(40) in aqueous solution. Biomacromolecules 4:1680–1685

    Article  CAS  Google Scholar 

  155. Luan CH, Harris RD, Prasad KU et al (1990) Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of elastin and its analogs. Biopolymers 29:1699–1706

    Article  CAS  Google Scholar 

  156. Urry DW, Trapane TL, McMichens RB et al (1986) N-15 nmr relaxation study of inverse temperature transitions in elastin polypentapeptide and its cross-linked elastomer. Biopolymers 25:S209–S228

    Article  CAS  Google Scholar 

  157. Kim W, Thevenot J, Ibarboure E et al (2010) Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew Chem Int Ed 49:4257–4260

    Article  CAS  Google Scholar 

  158. Nettles DL, Haider MA, Chilkoti A et al (2010) Neural network analysis identifies scaffold properties necessary for in vitro chondrogenesis in elastin-like polypeptide biopolymer scaffolds. Tissue Eng A 16:11–20

    Article  CAS  Google Scholar 

  159. Dreher MR, Raucher D, Balu N et al (2003) Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J Control Release 91:31–43

    Article  CAS  Google Scholar 

  160. Bidwell GL, Fokt I, Priebe W et al (2007) Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 73:620–631

    Article  CAS  Google Scholar 

  161. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24

    Article  CAS  Google Scholar 

  162. Hu XA, Wang XL, Rnjak J et al (2010) Biomaterials derived from silk-tropoelastin protein systems. Biomaterials 31:8121–8131

    Article  CAS  Google Scholar 

  163. Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  CAS  Google Scholar 

  164. Kessel S, Thomas A, Borner HG (2007) Mimicking biosilicification: programmed coassembly of peptide-polymer nanotapes and silic. Angew Chem Int Ed 46:9023–9026

    Article  CAS  Google Scholar 

  165. Cha JN, Stucky GD, Morse DE et al (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403:289–292

    Article  CAS  Google Scholar 

  166. Spoerke ED, Anthony SG, Stupp SI (2009) Enzyme directed templating of artificial bone mineral. Adv Mater 21:425–430

    Article  CAS  Google Scholar 

  167. Altunbas A, Sharma N, Lamm MS et al (2010) Peptide-silica hybrid networks: biomimetic control of network mechanical behavior. ACS Nano 4:181–188

    Article  CAS  Google Scholar 

  168. Meegan JE, Aggeli A, Boden N et al (2004) Designed self-assembled beta-sheet peptide fibrils as templates for silica nanotubes. Adv Funct Mater 14:31–37

    Article  CAS  Google Scholar 

  169. Yuwono VM, Hartgerink JD (2007) Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 23:5033–5038

    Article  CAS  Google Scholar 

  170. Pouget E, Dujardin E, Cavalier A et al (2007) Hierarchical architectures by synergy between dynamical template self- assembly and biomineralization. Nat Mater 6:434–439

    Article  CAS  Google Scholar 

  171. Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  CAS  Google Scholar 

  172. **g P, Rudra JS, Herr AB et al (2008) Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9:2438–2446

    Article  CAS  Google Scholar 

  173. Vandermeulen GWM, Tziatzios C, Klok HA (2003) Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a de novo four- stranded alpha-helical coiled coil motif. Macromolecules 36:4107–4114

    Article  CAS  Google Scholar 

  174. Petrie TA, Garcia AJ (2009) Extracellular matrix-derived ligands for selective integrin binding to control cell function. In: Puleo DA (ed) Biological interactions on materials surfaces. Springer, New York

    Google Scholar 

  175. Weber LM, Hayda KN, Haskins K et al (2007) The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28:3004–3011

    Article  CAS  Google Scholar 

  176. Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418

    Article  CAS  Google Scholar 

  177. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  178. Jung JP, Jones JL, Cronier SA et al (2008) Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation. Biomaterials 29:2143–2151

    Article  CAS  Google Scholar 

  179. Chun C, Lim HJ, Hong KY et al (2009) The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials 30:6295–6308

    Article  CAS  Google Scholar 

  180. Wu K, Yang JY, Konak C et al (2008) Novel synthesis of hpma copolymers containing peptide grafts and their self-assembly into hybrid hydrogels. Macromol Chem Phys 209:467–475

    Article  CAS  Google Scholar 

  181. Yang JY, Xu CY, Kopeckova P et al (2006) Hybrid hydrogels self-assembled from hpma copolymers containing peptide grafts. Macromol Biosci 6:201–209

    Article  CAS  Google Scholar 

  182. Yang JY, Xu CY, Wang C et al (2006) Refolding hydrogels self-assembled from n- (2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled- coil formation. Biomacromolecules 7:1187–1195

    Article  CAS  Google Scholar 

  183. Tzokova N, Fernyhough CM, Butler MF et al (2009) The effect of peo length on the self-assembly of poly(ethylene oxide)-tetrapeptide conjugates prepared by “click” chemistry. Langmuir 25:11082–11089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrin J. Pochan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altunbas, A., Pochan, D.J. (2011). Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering. In: Deming, T. (eds) Peptide-Based Materials. Topics in Current Chemistry, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_206

Download citation

Publish with us

Policies and ethics

Navigation