Enantioselective Sensing by Luminescence

  • Chapter
  • First Online:
Luminescence Applied in Sensor Science

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 300))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIEE:

Aggregation induced emission enhancement

BINOL:

1,1-Binaphthol

Boc:

tert-Butoxycarbonyl

BODIPY:

Boron dipyrromethene

BSA:

Bovine serum albumin

CD:

Cyclodextrin

CPL:

Circularly polarized luminescence

DFT:

Density functional theory

ECL:

Electrochemiluminescence

ET:

Energy transfer

Glu:

Glutamic acid

HSA:

Human serum albumin

LEC:

Ligand exchange chromatography

LUMO:

Lowest unoccupied molecular orbital

Lys:

Lysine

MIP:

Molecularly imprinted polymers

PA:

Phenylalaninol

PET:

Photoinduced electron transfer

QD:

Quantum dot

TICT:

Twisted intramolecular charge transfer

TRF:

Time-resolved “gated” fluorescence

References

  1. Vogtle F, Knops P (1991) Dyes for visual distinction between enantiomers – crown ethers as optical sensors for chiral compounds. Angew Chem Int Ed Engl 30:958–960

    Google Scholar 

  2. Kasper M, Busche S, Gauglitz G (2005) Optical sensing of enantiomers. In: Orellana G, Moreno-Bondi MC (eds) Frontiers in chemical sensors, vol. 3. Springer, Berlin

    Google Scholar 

  3. Smith SW (2009) Chiral toxicology: it’s the same thing…only different. Toxicol Sci 110:4–30

    CAS  Google Scholar 

  4. US FDA (1992) Development of new stereoisomeric drugs. Food and Drug Administration (FDA) Guidelines. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/GuidanceG/ucm122883.htm. Accessed 25 Mar 2010

  5. Rouhi AM (2004) Chiral chemistry. Chem Eng News 82:47–62

    Google Scholar 

  6. Liu WP, Gan JY, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA 102:701–706

    CAS  Google Scholar 

  7. Liu W, Ye J, ** M (2009) Enantioselective phytoeffects of chiral pesticides. J Agric Food Chem 57:2087–2095

    CAS  Google Scholar 

  8. Marchelli R, Dossena A, Palla G (1996) The potential of enantioselective analysis as a quality control tool. Trends Food Sci Technol 7:113–119

    CAS  Google Scholar 

  9. Gandolfi I, Palla G, Delprato L et al (1992) d-Amino acids in milk as related to heat-treatments and bacterial-activity. J Food Sci 57:377–379

    CAS  Google Scholar 

  10. Lavigne JJ, Savoy S, Clevenger MB, Ritchie JE, McDoniel B, Yoo S-J, Anslyn EV, McDevitt JT, Shear JB, Neikirk D (1998) Solution-based analysis of multiple analytes by a sensor array: toward the development of an “electronic tongue”. J Am Chem Soc 120:6429–6430

    CAS  Google Scholar 

  11. Zhong Z, Anslyn EV (2002) A colorimetric sensing ensemble for heparin. J Am Chem Soc 124:9014–9015

    CAS  Google Scholar 

  12. Prodi L, Bolletta F, Zaccheroni N et al (1998) A new family of luminescent sensors for alkaline earth metal ions. Chem Eur J 4:1090–1094

    CAS  Google Scholar 

  13. Prodi L, Bolletta F, Montalti M et al (2000) Luminescence signalled enantiomeric recognition of chiral organic ammonium ions by an enantiomerically pure dimethylacridino-18-crown-6 ligand. New J Chem 24:781–785

    CAS  Google Scholar 

  14. Lin J, Hu Q-S, Hua M-H et al (2002) A practical enantioselective fluorescent sensor for mandelic acid. J Am Chem Soc 124:2088–2089

    CAS  Google Scholar 

  15. Bell TW, Hext NM (2004) Supramolecular optical chemosensors for organic analytes. Chem Soc Rev 33:589–598

    CAS  Google Scholar 

  16. Czarnik AW (ed) (1992) Fluorescent chemosensors for ion and molecule recognition. ACS Symposium Series 538. American Chemical Society, Washington, DC

    Google Scholar 

  17. de Silva AP, Gunaratne HQN, Gunnlaugsson T et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Google Scholar 

  18. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    CAS  Google Scholar 

  19. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716

    CAS  Google Scholar 

  20. Szostak JW (1997) Introduction: Combinatorial Chemistry. Chem. Rev. 97:347–348, and all papers in the same issue

    Google Scholar 

  21. Reetz MT (2008) Combinatorial transition-metal catalysis: mixing monodentate ligands to control enantio-, diastereo-, and regioselectivity. Angew Chem Int Ed Engl 47:2556–2588

    CAS  Google Scholar 

  22. Tsukamoto M, Kagan HB (2002) Recent advances in the measurement of enantiomeric excesses. Adv Synth Catal 344:453–463

    CAS  Google Scholar 

  23. Revell JD, Wennemers H (2007) Identification of catalysts in combinatorial libraries. Top Curr Chem 277:251–266

    CAS  Google Scholar 

  24. Reetz MT, Sell T, Meiswinkel A, Mehler G (2003) A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. Angew Chem Int Ed Engl 42:790–793

    CAS  Google Scholar 

  25. Yao S, Meng J-C, Siuzdak G, Finn MG (2003) New catalysts for the asymmetric hydrosilylation of ketones discovered by mass spectrometry screening. J Org Chem 68:2540–2546

    CAS  Google Scholar 

  26. Kubo Y, Maeda S, Tokita S et al (1996) Colorimetric chiral recognition by a molecular sensor. Nature 382:522–524

    CAS  Google Scholar 

  27. Frankewich RP, Thimmaiah KN, Hinze WL (1991) Evaluation of the relative effectiveness of different water-soluble beta-cyclodextrin media to function as fluorescence enhancement agents. Anal Chem 63:2924–2933

    CAS  Google Scholar 

  28. Galaverna G, Dall'Asta C, Corradini R et al (2008) Cyclodextrins as selectors for mycotoxin recognition. World Mycotoxin J 1:397–406

    CAS  Google Scholar 

  29. Kumar VP, Kumar PA, Suryanarayana I et al (2007) Chiral recognition of zolmitriptan by modified cyclodextrins. Helv Chim Acta 90:1697–1704

    CAS  Google Scholar 

  30. Lammers I, Buijs J, van der Zwan G et al (2009) Phosphorescence for sensitive enantioselective detection in chiral capillary electrophoresis. Anal Chem 81:6226–6233

    CAS  Google Scholar 

  31. Garcia-Ruiz C, Scholtes MJ, Ariese F et al (2005) Enantioselective room temperature phosphorescence detection of non-phosphorescent analytes based on interaction with β-cyclodextrin/1-bromonaphthalene complexes. Talanta 66:641–645

    CAS  Google Scholar 

  32. Zhang XH, Wang Y, ** WJ (2008) Enantiomeric discrimination of 1,1’-binaphthol by room temperature phosphorimetry using γ-cyclodextrin as chiral selector. Anal Chim Acta 622:157–162

    CAS  Google Scholar 

  33. Xu Y, McCarroll ME (2004) Determination of enantiomeric composition by fluorescence anisotropy. J Phys Chem A 108:6929–6932

    CAS  Google Scholar 

  34. Kimaru IW, Xu Y, McCarroll ME (2006) Characterization of chiral interactions using fluorescence anisotropy. Anal Chem 78:8485–8490

    CAS  Google Scholar 

  35. Corradini R, Sartor G, Dossena A et al (1992) Enantioselective fluorescence quenching by a chiral copper(II) complex in ligand exchange equilibria. J Chem Soc Perkin Trans II:1979–1983

    Google Scholar 

  36. Impellizzeri G, Maccarrone G, Rizzarelli E et al (1991) 6-Deoxy-6-N-histamino ß cyclodextrin copper(II) complex, a new enantioselective receptor for aromatic amino acids. Angew Chem Int Ed Engl 30(1348):1349

    Google Scholar 

  37. Corradini R, Dossena A, Impellizzeri G et al (1994) Chiral recognition and separation of amino acids by means of a copper(II) complex of histamine monofunctionalized β-cyclodextrin. J Am Chem Soc 116:10267–10274

    CAS  Google Scholar 

  38. Erkkila KE, Odom DT, Barton JK (1999) Recognition of metallointercalators with DNA. Chem Rev 99:2777–2795

    CAS  Google Scholar 

  39. Fireman-Shoresh S, Popov I, Avnir D et al (2005) Enantioselective, chirally templated sol-gel thin films. J Am Chem Soc 127:2650–2655

    CAS  Google Scholar 

  40. Korbel GA, Lalic G, Shair MD (2001) Reaction microarrays: a method for rapidly determining the enantiomeric excess of thousands of samples. J Am Chem Soc 123:361–362

    CAS  Google Scholar 

  41. Dìaz DD, Yao S, Finn MG (2001) Measurement of enantiomeric excess of amines by mass spectrometry following kinetic resolution with solid-phase chiral acylating agents. Tetrahedron Lett 42:2617–2619

    Google Scholar 

  42. Knüttel T, Meyer H, Scheper T (2005) Synthesis, test and application of chiral fluorescence substrates to evaluate enzymatic processes in different reaction media. Enzyme Microb Technol 37:673–686

    Google Scholar 

  43. Noyori R, Takaya H (1990) Binap – an efficient chiral element for asymmetric catalysis. Acc Chem Res 23:345–350

    CAS  Google Scholar 

  44. Newcomb M, Helgeson RC, Cram DJ (1974) Enantiomer differentiation in transport through bulk liquid membranes. J Am Chem Soc 96:7367–7369

    CAS  Google Scholar 

  45. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337–347

    CAS  Google Scholar 

  46. Hembury GA, Borovkov VV, Inoue Y (2008) Chirality-sensing supramolecular systems. Chem Rev 108:1–73

    CAS  Google Scholar 

  47. Maier NM, Lindner W (2007) Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 389:377–397

    CAS  Google Scholar 

  48. James TD, Sandanayake KRAS, Shinkai S (1995) Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374:345–347

    CAS  Google Scholar 

  49. Riehl J, Richardson FS (1986) Circularly polarized luminescence spectroscopy. Chem Rev 86:1–16

    CAS  Google Scholar 

  50. Irie M, Yorozu T, Hayashi K (1978) Steric effect on fluorescence quenching of 1,l'-binaphthyl by chiral amines. J Am Chem Soc 100:2236–2237

    CAS  Google Scholar 

  51. Reetz MT, Sostmann S (2001) 2,15-Dihydroxy-hexahelicene (HELIXOL): synthesis and use as an enantioselective fluorescent sensor. Tetrahedron 57:2515–2520

    CAS  Google Scholar 

  52. Upadhyay SP, Pissurlenkar RRS, Coutinho EC et al (2007) Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine. J Org Chem 72:5709–5714

    CAS  Google Scholar 

  53. Chung YM, Raman B, Ahn KH (2006) Phenol-containing bis(oxazolines): synthesis and fluorescence sensing of amines. Tetrahedron 62:11645–11651

    CAS  Google Scholar 

  54. Mei X, Wolf C (2004) A highly congested N,N’-dioxide fluorosensor for enantioselective recognition of chiral hydrogen bond donors. Chem Commun 2078–2079

    Google Scholar 

  55. Tumambac GE, Wolf C (2005) Enantioselective analysis of an asymmetric reaction using a chiral fluorosensor. Org Lett 7:4045–4048

    CAS  Google Scholar 

  56. Su WC, Zhang WG, Zhang S et al (2009) A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron 25:488–492

    CAS  Google Scholar 

  57. ** X, Lou L, Jiang L et al (2008) Poly(N-phenylmaleimides) bearing chiral oxazolinyl pendant: supramolecular aggregation and enantioselectivity in fluorescence response. Polymer 49:2065–2070

    CAS  Google Scholar 

  58. Grady T, Harris SJ, Smyth MR et al (1996) Determination of the enantiomeric composition of chiral amines based on the quenching of the fluorescence of a chiral calixarene. Anal Chem 68:3775–3782

    CAS  Google Scholar 

  59. Liu SY, He YB, Qing GY et al (2005) Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron Asymmetry 16:1527–1534

    CAS  Google Scholar 

  60. Qing GY, He YB, Chen ZH et al (2006) Sensitive fluorescent sensors for malate based on calix[4]arene bearing anthracene. Tetrahedron Asymmetry 17:3144–3151

    CAS  Google Scholar 

  61. Qing GY, He YB, Wang F et al (2007) Enantioselective fluorescent sensors for chiral carboxylates based on calix[4]arenes bearing an l-tryptophan unit. Eur J Org Chem 11:1768–1778

    Google Scholar 

  62. Xu KX, Qiu Z, Zhao JJ et al (2009) Enantioselective fluorescent sensors for amino acid derivatives based on BINOL bearing benzoyl unit. Tetrahedron Asymmetry 20:1690–1696

    CAS  Google Scholar 

  63. Hu C, He Y, Chen Z et al (2009) Synthesis and enantioselective recognition of an (S)-BINOL-based colorimetric chemosensor for mandelate anions. Tetrahedron Asymmetry 20:104–110

    CAS  Google Scholar 

  64. Liu S, Pestano JPC, Wolf C (2008) Enantioselective fluorescence sensing of chiral alpha-amino alcohols. J Org Chem 73:4267–4270

    CAS  Google Scholar 

  65. Lynam C, Diamond D (2005) Varying solvent polarity to tune the enantioselective quenching of a calixarene host. J Mater Chem 15:307–314

    CAS  Google Scholar 

  66. Qing GY, Sun TL, He YB et al (2009) Highly selective fluorescent recognition of phenyl amino alcohol based on ferrocenyl macrocyclic derivatives. Tetrahedron Asymmetry 20:575–583

    CAS  Google Scholar 

  67. Zheng Y-S, Hu YJ (2009) Chiral recognition based on enantioselectively aggregation-induced emission. J Org Chem 74:5660–5663

    CAS  Google Scholar 

  68. Chen Z-H, He Y-B, Hu C-G et al (2008) Preparation of a metal–ligand fluorescent chemosensor and enantioselective recognition of carboxylate anions in aqueous solution. Tetrahedron Asymmetry 19:2051–2057

    CAS  Google Scholar 

  69. Chi L, Zhao J, James TD (2008) Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids. J Org Chem 73:4684–4687

    CAS  Google Scholar 

  70. Lin J, Rajaram AR, Pu L (2004) Enantioselective fluorescent recognition of chiral acids by 3- and 3,3’-aminomethyl substituted BINOLs. Tetrahedron 60:11277–11281

    CAS  Google Scholar 

  71. He X, Cui X, Li M et al (2009) Highly enantioselective fluorescent sensor for chiral recognition of amino acid derivatives. Tetrahedron Lett 50:5853–5856

    CAS  Google Scholar 

  72. Liu HL, Peng Q, Wu YD et al (2010) Highly enantioselective recognition of structurally diverse a-hydroxycarboxylic acids using a fluorescent sensor. Angew Chem Int Ed 49:602–606

    CAS  Google Scholar 

  73. Wei LH, He YB, Xu KX et al (2005) Chiral fluorescent receptors based on (R)-1,1'-binaphthylene-2,2'-bisthiourea: synthesis and chiral recognition. Chin J Chem 23:757–761

    CAS  Google Scholar 

  74. Lin J, Li ZB, Zhang HC et al (2004) Highly enantioselective fluorescent recognition of α-amino acid derivatives. Tetrahedron Lett 45:103–106

    CAS  Google Scholar 

  75. Li ZB, Lin J, Zhang HC et al (2004) Macrocyclic bisbinaphthyl fluorophores and their acyclic analogues: signal amplification and chiral recognition. J Org Chem 69:6284–6293

    CAS  Google Scholar 

  76. Li ZB, Lin J, Sabat M et al (2007) Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules. J Org Chem 72:4905–4916

    CAS  Google Scholar 

  77. Li ZB, Lin J, Pu L (2005) A cyclohexyl-1,2-diamine-derived bis(binaphthyl) macrocycle: enhanced sensitivity and enantioselectivity in the fluorescent recognition of mandelic acid. Angew Chem Int Ed 44:1690–1693

    CAS  Google Scholar 

  78. Li ZB, Lin J, Qin YC, Pu L (2005) Enantioselective fluorescent recognition of a soluble “supported” chiral acid: toward a new method for chiral catalyst screening. Org Lett 7:3441–3444

    CAS  Google Scholar 

  79. Li ZB, Pu L (2005) Synthesis of a new bisbinaphthyl macrocycle for enantioselective fluorescent recognition. J Mater Chem 15:2860–2864

    CAS  Google Scholar 

  80. Xu KX, Wu X-J, He Y-B et al (2005) Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron Asymmetry 16:833–839

    CAS  Google Scholar 

  81. Dhara K, Sarkar K, Roy P et al (2008) A highly enantioselective chiral Schiff-base fluorescent sensor for mandelic acid. Tetrahedron 64:3153–3159

    CAS  Google Scholar 

  82. Liu HL, Hou XL, Pu L (2009) Enantioselective precipitation and solid-state fluorescence enhancement in the recognition of a-hydroxycarboxylic acids. Angew Chem Int Ed 48:382–385

    CAS  Google Scholar 

  83. Muñiz FM, Simón L, Alcázar V et al (2009) A highly enantioselective receptor for carbamoyl lactic acid. Eur J Org Chem 31:5350–5354

    Google Scholar 

  84. Mei X, Wolf C (2004) Enantioselective sensing of chiral carboxylic acids. J Am Chem Soc 126:14736–14737

    CAS  Google Scholar 

  85. Wolf C, Liu S, Reinhardt BC (2006) An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives. Chem Commun 4242–4244

    Google Scholar 

  86. Mei X, Wolf C (2006) Determination of enantiomeric excess and concentration of chiral compounds using a 1,8-diheteroarylnaphthalene-derived fluorosensor. Tetrahedron Lett 47:7901–7904

    CAS  Google Scholar 

  87. Pagliari S, Corradini R, Galaverna G et al (2000) Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent β-cyclodextrins. Tetrahedron Lett 41:3691–3695

    CAS  Google Scholar 

  88. Marchelli R, Corradini R, Galaverna G et al (2006) Enantioselective separation of amino acids and hydroxy acids by ligand exchange with copper(II) complexes in HPLC (chiral eluent) and fast sensing systems. In: Subramanian G (ed) Chiral separation techniques. Wiley-VCH, Weinheim

    Google Scholar 

  89. Pagliari S, Corradini R, Galaverna G et al (2004) Enantioselective fluorescence sensing of amino acids by modified cyclodextrins: role of the cavity and sensing mechanism. Chem Eur J 10:2749–2758

    CAS  Google Scholar 

  90. Corradini R, Paganuzzi C, Marchelli R et al (2005) Fast parallel enantiomeric analysis of unmodified amino acids with fluorescent β-cyclodextrins. J Mater Chem 15:2741–2746

    CAS  Google Scholar 

  91. Corradini R, Paganuzzi C, Marchelli R et al (2007) Fluorescent cyclodextrins bearing metal binding sites and their use for chemo- and enantioselective sensing of amino acid derivatives. J Incl Phenom Macrocycl Chem 57:625–630

    CAS  Google Scholar 

  92. Corradini R, Paganuzzi C, Marchelli R et al (2003) Design and synthesis of fluorescent β-cyclodextrins for the enantioselective sensing of α-amino acids. Chirality 15:S30–S39

    CAS  Google Scholar 

  93. Kwong HL, Wong WL, Lee CS et al (2009) Zinc(II) complex of terpyridine-crown macrocycle: a new motif in fluorescence sensing of zwitterionic amino acids. Inorg Chem Commun 12:815–818

    CAS  Google Scholar 

  94. Wang H, Chan WH, Lee AWM (2008) Cholic acid-based fluorescent probes for enantioselective recognition of trifunctional amino acids. Org Biomol Chem 6:929–934

    CAS  Google Scholar 

  95. Yang L, Qin S, Su X et al (2010) 1,1’-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions. Org Biomol Chem 8:339–348

    CAS  Google Scholar 

  96. Paul S, Huang J, Ichinose I (2005) Enantioselective anion exchange on a positively charged poly(l-lysine) layer assembled on thin TiO2-gel films. New J Chem 29:1058–1063

    CAS  Google Scholar 

  97. Freeman R, Finder T, Bahshi LL et al (2009) β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett 9:2073–2076

    CAS  Google Scholar 

  98. Muller G (2009) Luminescent chiral lanthanide(III) complexes as potential molecular probes. Dalton Trans 9692–9707

    Google Scholar 

  99. Zhao C, Xu S, Su Y et al (2002) Chiral discrimination for enantiomers of amino acids using an electrochemiluminescence method. Analyst 127:889–891

    CAS  Google Scholar 

  100. Kim YK, Lee HN, Singh NJ et al (2008) Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: opposite chiral selectivities from similar binding units. J Org Chem 73:301–304

    CAS  Google Scholar 

  101. Qing G, Sun T, Chen Z et al (2009) ‘Naked-eye’ enantioselective chemosensors for N-protected amino acid anions bearing thiourea units. Chirality 21:363–373

    CAS  Google Scholar 

  102. Galindo F, Burguete MI, Luis SV (2004) Photophysical study of a cyclophane displaying intramolecular exciplex emission. Chem Phys 302:287–294

    CAS  Google Scholar 

  103. Burguete M, Galindo F, Luis SV et al (2010) Ratiometric fluorescence sensing of phenylalanine derivatives by synthetic macrocyclic receptors. J Photochem Photobiol A Chem 209:61–67

    CAS  Google Scholar 

  104. Alfonso I, Burguete MI, Galindo F et al (2009) Unraveling the molecular recognition of amino acid derivatives by a pseudopeptidic macrocycle: ESI-MS, NMR, fluorescence, and modeling studies. J Org Chem 74:6130–6142

    CAS  Google Scholar 

  105. Matsushita M, Yoshida K, Yamamoto N et al (2003) High-throughput screening by using a blue-fluorescent antibody sensor. Angew Chem Int Ed 42:5984–5987

    CAS  Google Scholar 

  106. Matsushita H, Yamamoto N, Meijler MM et al (2005) Chiral sensing using a blue fluorescent antibody. Mol Biosyst 1:303–306

    CAS  Google Scholar 

  107. Qin H, He Y, Hu C et al (2007) Enantioselective fluorescent sensor for dibenzoyl tartrate anion based on chiral binaphthyl derivatives bearing an amino acid unit. Tetrahedron Asymmetry 18:1769–1774

    CAS  Google Scholar 

  108. Liu S-Y, He YB, Chan WH et al (2006) Cholic acid-based high sensitivity fluorescent sensor for α,ω-dicarboxylate: an intramolecular excimer emission quenched by complexation. Tetrahedron 62:11687–11696

    CAS  Google Scholar 

  109. Liu SY, Law KY, Hea YB et al (2006) Fluorescent enantioselective receptor for S-mandelate anion based on cholic acid. Tetrahedron Lett 47:7857–7860

    CAS  Google Scholar 

  110. Costero AM, Llaosa U, Gil S et al (2009) Enantioselective sensing of dicarboxylates. Influence of the stoichiometry of the complexes on the sensing mechanism. Tetrahedron Asymmetry 20:1468–1471

    CAS  Google Scholar 

  111. Costero AM, Colera M, Gaviña P et al (2008) Chiral cyclohexane based fluorescent chemosensors for enantiomeric discrimination of aspartate. Tetrahedron 64:3217–3224

    CAS  Google Scholar 

  112. Han F, Chi L, Liang X et al (2009) 3,6-Disubstituted carbazole-based bisboronic acids with unusual fluorescence transduction as enantioselective fluorescent chemosensors for tartaric acid. J Org Chem 74:1333–1336

    CAS  Google Scholar 

  113. Zheng YS, Hu YJ, Li DM et al (2010) Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups. Talanta 80:1470–1474

    CAS  Google Scholar 

  114. Lin Z, Wu M, Wolfbeis OS (2005) Time-resolved fluorescent chirality sensing and imaging of malate in aqueous solution. Chirality 17:464–469

    CAS  Google Scholar 

  115. Xu KX, He YB, Qin HJ et al (2005) Enantioselective recognition by optically active chiral fluorescence sensors bearing amino acid units. Tetrahedron Asymmetry 16:3042–3048

    CAS  Google Scholar 

  116. James TD, Shinkai S (2002) Artificial receptors as chemosensors for carbohydrates. Top Curr Chem 218:159–200

    CAS  Google Scholar 

  117. Heinrichs G, Schellenträger M, Kubik S (2006) An enantioselective fluorescence sensor for glucose based on a cyclic tetrapeptide containing two boronic acid binding sites. Eur J Org Chem 18:4177–4186

    Google Scholar 

  118. Hamasaki K, Ikeda H, Nakamura A et al (1993) Fluorescent sensors of molecular recognition – modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge-transfer fluorescence. J Am Chem Soc 115:5035–5040

    CAS  Google Scholar 

  119. Tanabe T, Touma K, Hamasaki K et al (2001) Immobilized fluorescent cyclodextrin on a cellulose membrane as a chemosensor for molecule detection. Anal Chem 73:3126–3130

    CAS  Google Scholar 

  120. Ikeda H, Murayama T, Ueno A (2005) Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole moiety. Org Biomol Chem 3:4262–4267

    CAS  Google Scholar 

  121. Ikeda H, Li Q, Ueno A (2006) Chiral recognition by fluorescent chemosensors based on N-dansyl-amino acid-modified cyclodextrins. Bioorg Med Chem Lett 16:5420–5423

    CAS  Google Scholar 

  122. Ueno A, Suzuki I, Osa T (1990) Host guest sensory systems for detecting organic-compounds by pyrene excimer fluorescence. Anal Chem 62:2461–2466

    CAS  Google Scholar 

  123. Garcìa-Ruiz C, Hu XS, Ariese F et al (2005) Enantioselective room temperature phosphorescence detection of non-phosphorescent analytes based on interaction with β-cyclodextrin/1-bromonaphthalene complexes. Talanta 66:634–640

    Google Scholar 

  124. Urata H, Nomura K, Wada SI et al (2007) Fluorescent-labeled single-strand ATP aptamer DNA: chemo- and enantio-selectivity in sensing adenosine. Biochem Biophys Res Commun 360:459–463

    CAS  Google Scholar 

  125. Perrier S, Ravelet C, Guieu V et al (2010) Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Biosens Bioelectron 25:1652–1657

    CAS  Google Scholar 

  126. Yorozu T, Hayashi K, Irie M (1981) Chiral discrimination in fluorescence quenching. J Am Chem Soc 103:5480–5484

    CAS  Google Scholar 

  127. Prodi L, Bolletta F, Montalti M et al (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    CAS  Google Scholar 

  128. Prodi L, Montalti M, Zaccheroni N et al (2001) Dansylated polyamines as fluorescent sensors for metal ions: photophysical properties and stability of copper(II) complexes in solution. Helv Chim Acta 84:690–706

    CAS  Google Scholar 

  129. Davankov VA, Navratil JD, Walton HF (1988) Ligand exchange chromatography. CRC, Boca Raton

    Google Scholar 

  130. Haider JM, Pikramenou Z (2005) Photoactive metallocyclodextrins: sophisticated supramolecular arrays for the construction of light activated miniature devices. Chem Soc Rev 34:120–132

    CAS  Google Scholar 

  131. Bellia F, La Mendola D, Pedone C et al (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781

    CAS  Google Scholar 

  132. Corradini R, Dossena A, Marchelli R et al (1996) A modified cyclodextrin with a fully encapsulated dansyl group: self inclusion in the solid state and in solution. Chem Eur J 2:373–381

    CAS  Google Scholar 

  133. Wang Q, Chen X, Tao L et al (2007) Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1’-binaphthyl compound. J Org Chem 72:97–101

    CAS  Google Scholar 

  134. Beer G, Rurack K, Daub J (2001) Chiral discrimination with a fluorescent boron-dipyrromethene dye. Chem Commun 1138–1139

    Google Scholar 

  135. Fang L, Chan WH, He YB et al (2005) Fluorescent anion sensor derived from cholic acid: the use of flexible side chain. J Org Chem 70:7640–7646

    CAS  Google Scholar 

  136. Czarnik AW (1994) Chemical communication in water using fluorescent chemosensors. Acc Chem Res 27:302–308

    CAS  Google Scholar 

  137. de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134:2385–2393

    Google Scholar 

  138. Zhang X, Chi L, Ji S et al (2009) Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of α-hydroxyl carboxylic acids and monosaccharides. J Am Chem Soc 131:17452–17463

    CAS  Google Scholar 

  139. Tumambac GE, Mei X, Wolf C (2004) Stereoselective sensing by substrate-controlled syn/anti interconversion of a stereodynamic fluorosensor. Eur J Org Chem 2004:3850–3856

    Google Scholar 

  140. Mei X, Martin RM, Wolf C (2006) Synthesis of a sterically crowded atropisomeric 1,8-diacridylnaphthalene for dual-mode enantioselective fluorosensing. J Org Chem 71:2854–2861

    CAS  Google Scholar 

  141. Corradini R, Sforza S, Tedeschi T et al (2007) Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry. Chirality 19:269–294

    CAS  Google Scholar 

  142. Folmer-Andersen JF, Lynch VM, Anslyn EV (2005) Colorimetric enantiodiscrimination of α-amino acids in protic media. J Am Chem Soc 127:7986–7987

    CAS  Google Scholar 

  143. Leung D, Folmer-Andersen JF, Lynch VM et al (2008) Using enantioselective indicator displacement assays to determine the enantiomeric excess of α-amino acids. J Am Chem Soc 130:12318–12327

    CAS  Google Scholar 

  144. Zhu L, Zhong Z, Anslyn EV (2005) Guidelines in implementing enantioselective indicator-displacement assays for α-hydroxycarboxylates and diols. J Am Chem Soc 127:4260–4269

    CAS  Google Scholar 

  145. Hargrove AE, Zhong Z, Sessler JL et al (2010) Algorithms for the determination of binding constants and enantiomeric excess in host:guest equilibria using optical measurements. New J Chem 34:348–354

    CAS  Google Scholar 

  146. Meskers SCJ, Dekkers HPJM (2001) Enantioselective quenching of luminescence: molecular recognition of chiral lanthanide complexes by biomolecules in solution. J Phys Chem A 105:4589–4599

    CAS  Google Scholar 

  147. Tsukube H, Shinoda S (2002) Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem Rev 102:2389–2403

    CAS  Google Scholar 

  148. Montgomery CP, New EJ, Parker D et al. (2008) Enantioselective regulation of a metal complex in reversible binding to serum albumin: dynamic helicity inversion signalled by circularly polarised luminescence. Chem Commun 4261–4263

    Google Scholar 

  149. Petoud S, Muller G, Moore EG et al (2007) Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J Am Chem Soc 129:77–83

    CAS  Google Scholar 

  150. Wang L, Zhang Z, Huang L (2008) Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of dansyl-phenylalanine. Anal Bioanal Chem 390:1431–1436

    CAS  Google Scholar 

  151. Chen C, Wagner H, Still WC (1998) Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279:851–853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Corradini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Accetta, A., Corradini, R., Marchelli, R. (2010). Enantioselective Sensing by Luminescence. In: Prodi, L., Montalti, M., Zaccheroni, N. (eds) Luminescence Applied in Sensor Science. Topics in Current Chemistry, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_95

Download citation

Publish with us

Policies and ethics

Navigation