Cultivation of Medicinal Mushroom Biomass by Solid-State Bioprocessing in Bioreactors

  • Chapter
  • First Online:
Solid State Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 169))

Abstract

Basidiomycetes of various species and their wide range of pharmaceutically interesting products in the last decades represent one of the most attractive groups of natural products in Asia and North America. Production of fungal fruit bodies using farming technology is hardly covering the market. Comprehensive solid-state technologies and bioreactors are the most promising part for fast and large amount of cultivation of medicinal fungi biomass and its pharmaceutically active products. Wood, agriculture, and food industry wastes represent the main substrates that are in this process delignified and enriched in proteins and highly valuable pharmaceutically active compounds. Research in physiology, basic and applied studies in fungal metabolism, process engineering aspects, and clinical studies in the last two decades represent large contribution to the development of these potentials that initiate the development of new drugs and some of the most attractive over-the-counter human and veterinary remedies. Present article is an overview of the achievements in solid-state technology of the most relevant medicinal mushroom species production in bioreactors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ψ :

Water potential

a w :

Water activity

EPS:

Exopolysaccharide

M :

Water molecular mass

NGF:

Nerve growth factor

P :

Water vapor pressure

P 0 :

Water vapor pressure of pure water under the same condition

PSK:

Polysaccharide krestin from Trametes versicolor

PSP:

Polysaccharopeptide from Trametes versicolor

R :

Gas constant (8.31 J/mol K)

SmB:

Submerged bioprocessing

SSC:

Solid-state cultivation

T :

Absolute temperature

References

  1. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  CAS  Google Scholar 

  2. Bensky D, Gamble A (1993) In: Chinese materia medica. 2nd edn. Eastland Press, Seattle, pp 24–34

    Google Scholar 

  3. Wasser SP, Weiss AL (1997) Medicinal mushrooms – Ganoderma lucidum, Reishi mushroom. Pedeifus Publishing House, Haifa

    Google Scholar 

  4. Ooi VEC, Fang Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–729

    Article  CAS  Google Scholar 

  5. Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing and culture. Botanica Press, Santa Cruz

    Google Scholar 

  6. Mizuno T (1999) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mush 1:9–29

    Article  CAS  Google Scholar 

  7. Bohn JA, BeMiller JN (1995) (1-3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–14

    Article  CAS  Google Scholar 

  8. Li M, Lei L, Liang D (1999) Effect of Ganoderma polysaccharide on intracellular free calcium in murine peritoneal macrophages. Chin Pharm J 34:805–807

    CAS  Google Scholar 

  9. Maeda YY, Takahama S, Kohara Y, Yonekawa H (1996) Two genes controlling acute phase responses by the antitumour polysaccharide lentinan. Immunogenetics 43:215–219

    Article  CAS  Google Scholar 

  10. Maeda YY, Yonekawa H, Chihara G (1994) Application of lentinan as cytokine inducer and host defense potentiator in immunotherapy of infectious diseases. In: Masishi KW (ed) Immunotherapy of infections. Marcel Dekker Press, New York, pp 261–279

    Google Scholar 

  11. Chen JZ, Seviour R (2007) Medicinal importance of fungal ß-(1-3), (1-6)-glucans. Mycol Res 111:635–652

    Article  CAS  Google Scholar 

  12. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724

    Article  CAS  Google Scholar 

  13. Kidd PH (2000) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 5:4–27

    CAS  PubMed  Google Scholar 

  14. Mitchell DA, Berovic M (2018) Solid state cultivation. In: Berovic M, Hewitt CJ (eds) Principles of comprehensive biochemical engineering. University of Ljubljana Press, Ljubljana, pp 225–262

    Google Scholar 

  15. Thomas L, Larroche C, Pandey A (2013) Current developments in solid state bioprocessing. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  16. Soccol R, Scopel Ferreira da Costa E, Junior Letti LA, Grace Karp S, Lorenci Woiciechowski A, Vandenberghe Porto de Souza L (2017) Recent developments and innovations in solid state cultivation. Biotechnol Res Inn 1:52–71

    Article  Google Scholar 

  17. Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state cultivation technology: design, applications and engineering aspects. J Biotechnol 26:916–934

    Google Scholar 

  18. Hu C, Meguro S, Kawachi S (2004) Effects of physical properties of wood on the water activity of wood meal media for the cultivation of edible mushrooms. J Wood Sci 50:365–370

    Article  Google Scholar 

  19. Battaglino RA, Huergo M, Pilosof AMR, Bartholomai GB (1991) Culture requirements for the production of protease by Aspergillus oryzae in solid state cultivation. Appl Microbiol Biotechnol 35(3):292–296

    Article  CAS  Google Scholar 

  20. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125

    Article  CAS  Google Scholar 

  21. Velioglu Z, Urek RO (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state cultivation. J Biosci Bioeng 120:526–531

    Article  CAS  Google Scholar 

  22. Abdullah AL, Tengerdy RP, Murphy VG (1984) Optimization of solid substrate bioprocessing of wheat straw. Biotecnol Bioeng 27:20–27

    Article  Google Scholar 

  23. Ashok A, Doriya K, Ram Mohan Rao D, Kumar DS (2017) Design of solid state bioreactor for industrial applications: an overview to conventional bioreactors. Biocatal Agric Biotechnol 9:11–18

    Article  Google Scholar 

  24. Mitchell DA, Berovic M, Krieger N (2006) Introduction to solid state bioprocessing bioreactors. In: Mitchell DA, Krieger N, Berovic M (eds) Solid state bioprocessing bioreactors: fundamentals of design and operation. Springer, Berlin, pp 125–132

    Google Scholar 

  25. Lonsane BK, Saucedo-Castaneda G, Raimbault M, Roussos S, Viniegra-Gonzalez G, Ghildyal NP, Ramakrishna M, Krishnaiah MM (1992) Scale-up strategies for solid state cultivation systems. Process Biochem 27:259–273

    Article  CAS  Google Scholar 

  26. Fung CJ, Mitchell DA (1995) Baffles increase performance of solid state cultivation in rotating drums. Biotech Tech 9:295–298

    Article  CAS  Google Scholar 

  27. Berovic M, Ostroversnik H (1997) Production of Aspergillus niger pectolytic enzymes by solid state cultivation of apple pomace. J Biotechnol 53:47–53

    Article  CAS  Google Scholar 

  28. Habijanic J, Berovic M (2000) The relevance of solid state substrate moisturing on Ganoderma lucidum biomass cultivation. Food Technol Biotechnol 38:225–228

    CAS  Google Scholar 

  29. Švagelj M, Berovic M, Boh B, Menard A, Simcic S, Wraber B (2008) Solid state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and immunostimulatory effects of fungal intra-and extracellular ß-polysaccharides. N Biotechnol 25:150–155

    Article  Google Scholar 

  30. Boh B (2006) Use of waste materials from agriculture for cultivation of edible and medicinal mushrooms. In: Information study and reference database. Bistra Press, Ptuj, pp 180–186

    Google Scholar 

  31. Mizuno T, Wang G, Zhang J, Kawagishi H, Nishitoba T, Li J (1995) Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substance and medicinal effects. Food Rev Int 11:151–166

    Article  CAS  Google Scholar 

  32. Lee KM, Lee SY, Lee HY (1999) Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J Biosci Bioeng 88:646–650

    Article  CAS  Google Scholar 

  33. Wagner R, Mitchell DA, Lanzi Sassaki G, Lopes de Almeida Amazonas MA, Berovic M (2003) Submerged cultivation of Ganoderma lucidum. Food Technol Biotechnol 41:371–382

    CAS  Google Scholar 

  34. Hsieh C, Yang FC (2004) Reusing soy residue for the solid state bioprocessing of Ganoderma lucidum. Bioresour Technol 91:105–109

    Article  CAS  Google Scholar 

  35. Song M, Kim N, Lee S, Hwang S (2007) Use of whey permeate for cultivating Ganoderma lucidum mycelia. J Dairy Sci 90:2141–2146

    Article  CAS  Google Scholar 

  36. Montoya S, Sanchez OJ, Levin L (2013) Polysaccharide production by submerged and solid state cultures from several medicinal higher basidiomycetes. Int J Med Mushrooms 15:71–79

    Article  CAS  Google Scholar 

  37. Montoya-Barreto S, Varon Lopez M, Levin L (2008) Effect of culture parameters on the production of the edible mushroom Grifola frondosa (maitake) in tropical weathers. World J Microbiol Biotechnol 24:1361–1366

    Article  Google Scholar 

  38. Postemsky PD, Bidegain MA, González-Matute R, Figlas ND, Cubitto MA (2017) Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid state bioprocessing with Ganoderma lucidum. Bioresour Technol 231:85–93

    Article  CAS  Google Scholar 

  39. Habjanic J, Berovic M (2002) Process of cultivation of fungus Ganoderma lucidum on a solid cultivation substrate. SI Patent 20923, 31 Dec 2002

    Google Scholar 

  40. **ng ZT, Cheng JH, Tan Q, Pan YJ (2006) Effect of nutritional parameters on laccase production by the culinary and medicinal mushroom, Grifola frondosa. World J Microbiol Biotechnol 22:799–806

    Article  CAS  Google Scholar 

  41. Habijanic J, Švagelj M, Berovic M, Boh B (2009) Submerged and solid state cultivation of bioactive extra – and intracellular polysaccharides of medicinal mushrooms Ganoderma lucidum (W. Curt.: Fr.) P. Karst. and Grifola frondosa (Dicks.: Fr.) S. F. Gray (Aphyllophoromycetideae). Int J Med Mush 11(4):1–10

    Article  Google Scholar 

  42. Knežević A, Milovanović I, Stajić M, Vukojević J (2013) Trametes suaveolens as ligninolytic enzyme producer. J Nat Sci 124:437–444

    Google Scholar 

  43. Stoilova I, Krastanov A, Stanchev V (2010) Properties of crude laccase from Trametes versicolor producedby solid-substrate cultivation. Adv Biosci Biotechnol 1:208–215

    Article  CAS  Google Scholar 

  44. Dinis M, Bezerra RM, Nunes F, Dias AA, Guedes CV, Ferreira LM, Cone JW, Marques GS, Barros AR, Rodrigues MA (2009) Modification of wheat straw lignin by solid state cultivation with white-rot fungi. Bioresour Technol 100:4829–4835

    Article  CAS  Google Scholar 

  45. Souza ÉSD, Sampaio IDL, Freire AKDL, Khell B, Silva S, Sobrinho ADS, Lima AM, Souza JVB (2011) Production of Trametes versicolor laccase by solid state cultivation using a fixed-bed bioreactor, Food Agric Environ 9: 55-58.

    Google Scholar 

  46. Rakus J, Berovic M, Golob J (2016) Extraction of fungal polysaccharides from solid state cultivated mycelia Trametes versicolor (Agaricomycetes). Int J Med Mushrooms 18:509–519

    Article  Google Scholar 

  47. Ko HH, Hung CF, Wang JP, Lin CN (2008) Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry 69:234–239

    Article  CAS  Google Scholar 

  48. Berovic M, Habijanic J, Boh B, Wraber B, Petravic-Tominac V (2012) Production of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (Higher Basidiomycetes), biomass and polysaccharides by solid state cultivation. Int J Med Mushrooms 14:513–520

    Article  Google Scholar 

  49. Gerbec B, Tavčar E, Gregori A, Kreft S, Berovic M (2015) Solid state cultivation of Hericium erinaceus biomass and erinacine A production. J Bioprocess Biotech 5:1–5

    Google Scholar 

  50. Han J (2003) Solid state cultivation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value. Int J Food Microbiol 80:61–66

    Article  CAS  Google Scholar 

  51. Gregori A (2014) Cordycepin production by Cordyceps militaris cultivation on spent brewery grains. Acta Biol Slovenica 57:45–52

    Google Scholar 

  52. Ardigo W (2016) In: Wasser SP, Volz PA (eds) Healing with medicinal mushrooms. Youcanprint Self-Publishing Press, Roma, pp 313–321

    Google Scholar 

  53. Chu KK, Ho SS, Chow AH (2002) Trametes versicolor: a medicinal mushroom with promising immunotherapeutic values. J Clin Pharmacol 42:976–984

    Article  Google Scholar 

  54. Cheng KF, Leung PC (2008) General review of polysaccharopeptides (PSP) from C. versicolor: pharmacological and clinical studies. Cancer Ther 6:117–130

    CAS  Google Scholar 

  55. Ng TB (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Trametes versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 30:1–4

    Article  CAS  Google Scholar 

  56. Kidd PM (2005) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 1:4–27

    Google Scholar 

  57. Cui J, Chisti Y (2003) Polysaccharopeptides of Trametes versicolor: physiological activity, uses, and production. Biotechnol Adv 21:109–122

    Article  CAS  Google Scholar 

  58. Price LA, Wenner CA, Sloper DT (2010) Role for toll-like receptor 4 in TNF-alpha secretion by murine macrophages in response to polysaccharide Krestin, a Trametes versicolor mushroom extract. Fitoterapia 81:914–919

    Article  CAS  Google Scholar 

  59. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Furukawa S (1994) Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 35(10):1569–1572

    Article  CAS  Google Scholar 

  60. Kawagishi H, Shimada A, Shizuki K, Mori H (1996) Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocycl Commun 2:51–54

    Article  CAS  Google Scholar 

  61. Kawagishi H, Shimada A, Hosokawa S, Mori H (1996) Erinacines E, F and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 37:7399–7402

    Article  CAS  Google Scholar 

  62. Kawagishi H, Masui A, Tukuyama S, Nakamura T (2006) Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron Lett 62:8463–8466

    Article  CAS  Google Scholar 

  63. Kenmoku H, Sassa T, Kato N (2000) Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. Tetrahedron Lett 41:4389–4393

    Article  CAS  Google Scholar 

  64. Kenmoku H, Shimai T, Toyomasu T, Kato N, Sassa T (2002) Erinacine Q, a new erinacine from Hericium erinaceum and its biosynthetic route to erinacine C in the basidiomycete. Biosci Biotechnol Biochem 66:571–575

    Article  CAS  Google Scholar 

  65. Lee EW, Shizuki K, Hosokawa S, Suzuki M (2000) Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem 64:2402–2405

    Article  CAS  Google Scholar 

  66. Chen X, Wu G, Huang Z (2013) Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int J Biol Macromol 58:18–22

    Article  CAS  Google Scholar 

  67. Guan J, Zhao J, Feng K, Hu DJ, Li SP (2011) Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide map**. Anal Bioanal Chem 399:3465–3474

    Article  CAS  Google Scholar 

  68. Russell R, Paterson M (2008) Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Berovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berovic, M. (2019). Cultivation of Medicinal Mushroom Biomass by Solid-State Bioprocessing in Bioreactors. In: Steudler, S., Werner, A., Cheng, J. (eds) Solid State Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 169. Springer, Cham. https://doi.org/10.1007/10_2019_89

Download citation

Publish with us

Policies and ethics

Navigation