Orbitally Shaken Single-Use Bioreactors

  • Chapter
  • First Online:
Disposable Bioreactors II

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brod H, Vester A, Kauling J (2012) Opportunities and limitations of disposable technologies in biopharmaceutical processes. Chem Ing Tech 84(5):633–645

    Article  CAS  Google Scholar 

  2. Reyes C, Pena C, Galindo E (2003) Reproducing shake flasks performance in stirred fermentors: production of alginates by Azotobacter vinelandii. J Biotechnol 105(1–2):189–198

    Article  CAS  Google Scholar 

  3. Seletzky JM, Noak U, Fricke J et al (2007) Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum in lactic acid based on oxygen transfer and pH. Biotechnol Bioeng 98(4):800–811

    Article  CAS  Google Scholar 

  4. Pena C, Millan M, Galindo E (2008) Production of alginate by Azotobacter vinelandii in a stirred fermentor simulating the evolution of power input observed in shake flasks. Process Biochem 43(7):775–778

    Article  CAS  Google Scholar 

  5. Mehmood N, Olmos E, Marchal P et al (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, k(L)a. Process Biochem 45(11):1779–1786

    Article  CAS  Google Scholar 

  6. De Jesus MJ, Girard P, Bourgeois M et al (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17(3):217–223

    Article  Google Scholar 

  7. Büchs J, Maier U, Lotter S et al (2007) Calculating liquid distribution in shake flasks on rotary shakers at waterlike viscosities. Biochem Eng J 34(3):200–208

    Article  Google Scholar 

  8. Büchs J, Maier U, Milbradt C et al (2000a) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68(6):589–593

    Article  Google Scholar 

  9. Klöckner W, Tissot S, Wurm F et al (2012) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Biochem Eng J 65:63–69

    Article  Google Scholar 

  10. Kato Y, Peter CP, Akgün A et al (2004) Power consumption and heat transfer resistance in large rotary shaking vessels. Biochem Eng J 21(1):83–91

    Article  CAS  Google Scholar 

  11. Raval K, Kato Y, Büchs J (2007) Comparison of torque method and temperature method for determination of power consumption in disposable shaken bioreactors. Biochem Eng J 34(3):224–227

    Article  CAS  Google Scholar 

  12. Raval K, Büchs J (2008) Extended method to evaluate power consumption in large disposable shaking bioreactors. J Chem Eng Jpn 41(11):1075–1082

    Article  CAS  Google Scholar 

  13. Büchs J, Zoels B (2001) Evaluation of maximum to specific power consumption ratio in shaking bioreactors. J Chem Eng Jpn 34(5):647–653

    Article  Google Scholar 

  14. Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93(6):1164–1176

    Article  CAS  Google Scholar 

  15. Zhang X, Stettler M, Reif O et al (2008) Shaken helical track bioreactors: providing oxygen to high-density cultures of mammalian cells at volumes up to 1000 l by surface aeration with air. New Biotechnol 25(1):68–75

    Article  Google Scholar 

  16. Zhang X, Bürki C-A, Stettler M et al (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 l. Biochem Eng J 45(1):41–47

    Article  Google Scholar 

  17. Stettler M, Zhang X, Hacker DL et al (2007) Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog 23(6):1340–1346

    Article  CAS  Google Scholar 

  18. Tissot S, Michel PO, Hacker DL et al (2012) k(L)a as a predictor for successful probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors. New Biotechnol 29(3):387–394

    Article  CAS  Google Scholar 

  19. Tissot S, Oberbek A, Reclari M et al (2011) Efficient and reproducible mammalian cell bioprocesses without probes and controllers? New Biotechnol 28(4):382–390

    Article  CAS  Google Scholar 

  20. Mostafa SS, Gu XJ (2003) Strategies for improved dCO(2) removal in large-scale fed-batch cultures. Biotechnol Prog 19(1):45–51

    Article  CAS  Google Scholar 

  21. Zhang X, Stettler M, De Sanctis D et al (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng/Biotechnol 115:33–53

    Article  Google Scholar 

  22. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162

    Article  CAS  Google Scholar 

  23. Anderlei T, Zang W, Papaspyrou M et al (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17(3):187–194

    Article  CAS  Google Scholar 

  24. Henzler HJ, Schedel M (1991) Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Eng 7(3):123–131

    Article  CAS  Google Scholar 

  25. Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7(2):99–106

    Article  CAS  Google Scholar 

  26. Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem Eng J 17(3):155–167

    Article  CAS  Google Scholar 

  27. Maier B, Dietrich C, Büchs J (2001) Correct application of the sulphite oxidation methodology of measuring the volumetric mass transfer coefficient k(L)a under non-pressurized and pressurized conditions. Food Bioprod Process 79(C2):107–113

    Google Scholar 

  28. Ries C, John G, John C et al (2010) A shaken disposable bioreactor system for controlled insect cell cultivations at milliliter-scale. Eng Life Sci 10(1):75–79

    Article  CAS  Google Scholar 

  29. Tissot S, Farhat M, Hacker DL et al (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J 52(2–3):181–186

    Article  CAS  Google Scholar 

  30. Büchs J, Maier U, Milbradt C et al (2000b) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68(6):594–601

    Article  Google Scholar 

  31. Büchs J, Lotter S, Milbradt C (2001b) Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. Biochem Eng J 7(2):135–141

    Article  Google Scholar 

  32. Büchs J (2001a) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7(2):91–98

    Article  Google Scholar 

  33. Liu CM, Hong LN (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7(2):121–125

    Article  CAS  Google Scholar 

  34. Raval KN, Liu C, Büchs J (2006) Large-scale disposable shaking bioreactors: a promising choice. Bioprocess Int 4(1):46–50

    CAS  Google Scholar 

  35. Muller N, Girard P, Hacker DL et al (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89(4):400–406

    Article  CAS  Google Scholar 

  36. Muller N, Derouazi M, Van Tilborgh F et al (2007) Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems. Biotechnol Lett 29(5):703–711

    Article  CAS  Google Scholar 

  37. Stettler M, De Jesus M, Ouertatani-Sakouhi H et al (2007) 1000 non-instrumented bioreactors in a week. In: Smith R (ed) Cell technology for cell products. Springer, New York, pp 489–495

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Büchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klöckner, W., Diederichs, S., Büchs, J. (2013). Orbitally Shaken Single-Use Bioreactors. In: Eibl, D., Eibl, R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_188

Download citation

Publish with us

Policies and ethics

Navigation