Coherent domains in the streaming cytoplasm of a giant algal cell

  • Chapter
Water and the Cell

Abstract

Giant internodal cells of the charophyte Lamprothamnium respond to hypotonic shock with an extended action potential and transient cessation of cytoplasmic streaming. The macro-structure of streaming cytoplasm was analysed before, during, and after hypotonic shock. Streaming cytoplasm contains coherent, cloud-like macroscopic domains, whose perimeter varies from hundreds to many thousands of micrometres. Some domains avidly associate with the fluorochrome 6-carboxyfluorescein (6CF), and others do not. The 6CF-labelled domains are recognisable through many cycles of streaming, despite constantly changing irregular edges. Domain perimeters were described by a fractal dimension of 4/3, the exponent of a power law fitted to a log-log plot of domain perimeter-area. Following hypotonic shock, the stable pattern of coherent domains enters an unstable phase of coalescence, and discrete domains subsequently amalgamate into stable, extended domains. Instability is associated with Ca2+ influx and Cl- efflux, and a large increase in cell conductance. The electrophysiological K+ state, with greatly reduced conductance, is associated with the new, amalgamated stable state. The results support a concept of cytoplasm as a sponge-like percolation cluster, undergoing transition from discrete to extended domains. Results are discussed in terms of published theories concerning co-operative behaviour of supramolecular water-ion-protein complexes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht-Buehler G (1985) Is cytoplasm intelligent too? In: Shay JW (ed) Cell and Muscle Motility. 6. New York, London: Plenum Press, pp 1–21

    Google Scholar 

  • Albrecht-Buehler G (1990)In defense of non-molecular biology. Int Rev Cytol 120:191–241

    PubMed  CAS  Google Scholar 

  • Al-Habori M (1995) Microcompartmentation, metabolic channeling and carbohydrate metabolism. Int J Biochem Cell Biol 27:123–132

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S (1994) On the fractal nature of cytoplasm. FEBS Lett 344:1–4

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S (2002) Coherent and robust modulation of a metabolic network by cytoskeletal organisation and dynamics. Biophys Chem 97:213–231

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, Lloyd D (2000) Chaotic dynamics and fractal space in biochemistry: simplicity underlies complexity. Cell Biol Internat 24:581–587

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum. 1. I/V analysis and pharmacological dissection of the hypotonic effect. Plant, Cell Environ 19:837–847

    Article  Google Scholar 

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant, Cell, Environ 22:347–359

    Article  CAS  Google Scholar 

  • Bisson MA (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    CAS  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–742

    Article  CAS  Google Scholar 

  • Bruni F, Careri G, Clegg JS (1989) Dielectric properties of Artemia cysts at low water contents. Evidence for a percolative transition. Biophys J 55:331–338

    PubMed  CAS  Google Scholar 

  • Cameron IL, Fullerton GD, Smith NKR (1988) Influence of cytomatrix proteins on water and on ions in cells. Scanning Microsc 2:275–288

    PubMed  CAS  Google Scholar 

  • Canny MJ, Huang CX (1993) What is in the intercellular spaces of roots? Evidence from the cryo-analytical-scanning microscope. Physiol Plant 87:561–568

    Article  CAS  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  PubMed  CAS  Google Scholar 

  • Chaplin MF (1999) A proposal for the structuring of water. Biophys Chem 83:211–221

    Article  Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Amer J Physiol 246:R133–R151

    PubMed  CAS  Google Scholar 

  • Clegg JS, Drost-Hansen W (1975) On the biochemistry and cell physiology of water. In: Hochachka PW, Mommsen TP (eds) Biochemistry and Molecular Biology of Fishes 1. Phylogenetic and Biochemical Perspectives. New York: Elsevier Science Publishers, pp 1–23

    Google Scholar 

  • Collins K (1984) Sticky ions in biological systems. Proc Natl Acad Sci USA 26:12233–12239

    Google Scholar 

  • Coster HGL, Syriatowicz JC, Vorobiev LN (1968) Cytoplasmic ion exchange during rest and excitation in Chara australis. Aust J Biol Sci 21:1069–1073

    Google Scholar 

  • Coster HGL, George EP, Rendle VA (1974) Potentials developed at a solution cytoplasm interface in Chara corallinaduring rest and excitation. Aust J Plant Physiol 1:459–471

    CAS  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Drost-Hansen W, Singleton JL (1995) Our aqueous heritage: Role of vicinal water in cells. In: Bittar EE (ed) Principles of Medical Biology. 4. Cell Chemistry and Physiology. Greenwich Connecticut: JAI Press Inc, pp 195–215

    Google Scholar 

  • Edelmann L (1988) The cell water problem posed by electron microscopic studies of ion binding in muscle. Scanning Microsc 2:851–865

    PubMed  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2000) Actin in characean internodal cells. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences. 89. Dordrecht: Kluwer Academic Publishers, pp 259–426

    Google Scholar 

  • Foissner I, Wasteneys GO (2000) Nuclear crystals, lampbrush-chromosome-like structures, and perinuclear cytoskeletal elements associated with nuclear fragmentation in characean internodal cells. Protoplasma 212:146–161

    Article  Google Scholar 

  • Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Article  PubMed  CAS  Google Scholar 

  • Grolig F, Pierson ES (2000) Cytoplasmic streaming: from flow to track. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences. 89. Dordrecht: Kluwer Academic Publishers, pp 165–190

    Google Scholar 

  • Hill BS, Findlay GP (1981) The power of movement in plants: the role of osmotic machines. Q Rev Biophys 14:173–222

    PubMed  CAS  Google Scholar 

  • Hochachka PW (1999) The metabolic implications of intracellular circulation. Proc Natl Acad Sci USA 26:12233–12239

    Article  Google Scholar 

  • Hope AB, Walker NA (1975) The Physiology of Giant Algal Cells. London, New York: Cambridge University Press

    Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of the endoplasmic reticulum along actin filaments. J. Cell Biol 106:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Kenkel NC, Walker DJ (1996) Fractals in the biological sciences. Coenoses 11:77–100

    Google Scholar 

  • Kikuyama M (2001) Role of Ca2+ in membrane excitation and cell motility in characean cells as a model system. Int Rev Cytol 201:85–114

    PubMed  CAS  Google Scholar 

  • Kirst GO, Jansen MIB, Winter U (1988) Ecological investigations of Chara vulgaris L grown in a brackish water lake: ionic changes and accumulation of sucrose in the vacuolar sap during sexual reproduction. Plant, Cell, Environ 11:55–61

    Article  CAS  Google Scholar 

  • La Claire JW (1989) Actin cytoskeleton in intact and wounded coenocytic green algae. Planta 177:47–57

    Article  Google Scholar 

  • Lichtscheidl IK, Baluska F (2000) Motility of endoplasmic reticulum in plant cells. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences. 89. Dordrecht: Kluwer Academic Publishers, pp 191–201

    Google Scholar 

  • Mandelbrot BB (1983) The Fractal Geometry of Nature. New York: WH Freeman and Company

    Google Scholar 

  • Oda K, Linstead PJ (1975) Changes in cell length during action potentials in Chara. J. Exp. Bot 26:228–239

    Article  Google Scholar 

  • Okazaki Y, Ishigami M, Iwasaki N (2002) Temporal relationship between cytosolic free Ca2+ and membrane potential during hypotonic turgor regulation in brackish water charophyte Lamprothamnium succinctum. Plant Cell Physiol 43:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Pickard WF (2003) The role of cytoplasmic streaming in symplastic transport. Plant, Cell, Environ 26:1–15

    Article  CAS  Google Scholar 

  • Pollack GH (2001) Cells Gels and the Engines of Life. Seattle, Washington: Ebner and Sons Publishers

    Google Scholar 

  • Pollack GH (2004) The role of aqueous interfaces in the cell. Adv Coll Interfac Sci 103:173–196

    Article  CAS  Google Scholar 

  • Pollack GH, Reitz FB (2001) Phase transitions and molecular motion in the cell. Cell Mol. Biol 47:885–900

    PubMed  CAS  Google Scholar 

  • Shepherd VA, Goodwin PB (1989) The porosity of permeabilised Chara cells. Aust J Plant Physiol 16:231–239

    Article  Google Scholar 

  • Shepherd VA, Goodwin PB (1992a) Seasonal patterns of cell-to-cell communication in Chara corallina Klein ex Willd. 1. Cell-to-cell communication in vegetative lateral branches during winter and spring. Plant, Cell, Environ 15:137–150

    Article  Google Scholar 

  • Shepherd VA, Goodwin PB (1992b) Seasonal patterns of cell-to-cell communication in Chara corallina Klein ex Willd. 2. Cell-to-cell communication during the development of antheridia. Plant, Cell, Environ 15:151–162

    Article  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophytes: the response to touch and to salinity stress. Eur Biophys J 31:341–355

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Bisson MA (2004) When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 223:79–91

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (1994) Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155:97–139

    Article  CAS  Google Scholar 

  • Tazawa M, Shimmen T (2001) How Characean cells have contributed to the progress of plant membrane biophysics. Aust J Plant Physiol 28:523–539

    CAS  Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22:1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (1999) Le calcium, c’est la vie: Calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wardrop AB (1983) Evidence for the possible presence of a microtrabecular lattice in plant cells. Protoplasma 115:81–87

    Article  Google Scholar 

  • Watterson JG (1988) A model linking water and protein structures. Biosystems 22:51–54

    Article  PubMed  CAS  Google Scholar 

  • Watterson JG (1991) The interactions of water and protein in cellular function. In: Jeanteur P, Kuchino Y, Muller WEG, Paine PL (eds) Progress in Molecular and Subcellular Biology 12. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer Verlag, pp 113–134

    Google Scholar 

  • Watterson JG (1993) The wave-cluster model of water-protein interactions. In: Green DG, Bossmaier T (eds) Complex Systems: From Biology to Computation. Amsterdam, Oxford, Washington, Tokyo: IOS Press, pp 36–45

    Google Scholar 

  • Watterson JG (1997) The pressure pixel-unit of life? Biosystems 41:141–152

    Article  PubMed  CAS  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with a special emphasis on Characean internodal cells. The Bot Rev 60:265–367

    Article  CAS  Google Scholar 

  • Wayne R, Staves MP, Leopold AC (1990) Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis. Protoplasma 155:43–57

    Article  PubMed  CAS  Google Scholar 

  • Wheatley DN (2003) Diffusion, perfusion and the exclusion principles in the structural and functional organisation of the living cell: reappraisal of the properties of the ‘‘ground substance 99. J Exp Biol 206:1955–1961

    Article  PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Wiggins PM (1990) Role of water in some biological processes. Microbiol Rev 54:432–449

    PubMed  CAS  Google Scholar 

  • Wiggins PM (1995a) High and low density water in gels. Prog Polym Sci 20:1121–1163

    Article  CAS  Google Scholar 

  • Wiggins PM (1995b) Micro-osmosis in gels, cells and enzymes. Cell Biochem Funct 13:165–172

    Article  CAS  Google Scholar 

  • Wiggins PM (1996) High and low-density water and resting, active and transformed cells. Cell Biol Int 20:429–435

    Article  PubMed  CAS  Google Scholar 

  • Wiggins PM (2001) High and low-density intracellular water. Cell Mol Biol 47:735–744

    PubMed  CAS  Google Scholar 

  • Williamson RE (1975) Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17:655–668

    PubMed  CAS  Google Scholar 

  • Williamson RE (1985) Immobilisation of organelles and actin bundles in the cortical cytoplasm of the alga Chara corallina Klein ex. Willd Protoplasma 163:1–8

    CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Winter U, Meyer MIB, Kirst GO (1987) Seasonal changes of ionic concentrations in the vacuolar sap of Chara vulgaris L. grown in a brackish water lake. Oecologia 74:122–127

    Article  Google Scholar 

  • Yokota E, Muto S, Shimmen T (2000) Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-binding protein isolated from lily pollen tubes. Plant Physiol 123:645–654

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U, Beckers F (1978) Generation of action potentials in Chara corallina by turgor pressure changes. Planta 138:173–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Shepherd, V. (2006). Coherent domains in the streaming cytoplasm of a giant algal cell. In: Pollack, G.H., Cameron, I.L., Wheatley, D.N. (eds) Water and the Cell. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4927-7_3

Download citation

Publish with us

Policies and ethics

Navigation