Orthogonal Projections on Hyperbolic Space

  • Conference paper
Harmonic Analysis, Signal Processing, and Complexity

Part of the book series: Progress in Mathematics ((PM,volume 238))

Abstract

A well-known decomposition of the L 2 space of a bounded domain in the complex plane is extended here to the context of hyperbolic n-space. We will use the model of upper half-space with the hyperbolic metric. Applications to boundary value problems for the hyperbolic Laplacian and another Laplace operator are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Möbius Transformations in Several Dimensions, Ordway Lecture Notes, University of Minnesota, Minneapolis, 1981.

    MATH  Google Scholar 

  2. Ö. Akin and H. Leutwiler, On the invariance of the solutions of the Weinstein equation under Möbius transformations, in K. Gowrisankran, J. Bliedtner, D. Feyel, M. Goldstein, W. K. Hayman, and I. Netuka, eds., Classical and Modern Potential Theory and Applications: Proceedings of the NATO Advanced Research Workshop, Chateau De Bonas, France, July 25–31, 1993, Kluwer, Dordrecht, the Netherlands, 1994, 19–29.

    Google Scholar 

  3. D. Calderbank, Dirac Operators and Clifford Analysis on Manifolds, Preprint 96-131, Max Plank Institute for Mathematics, Bonn, 1996.

    Google Scholar 

  4. P. Cerejeiras and J. Cnops, Hodge—Dirac operators for hyperbolic space, Complex Variables, 41 (2000), 267–278.

    MATH  MathSciNet  Google Scholar 

  5. J. Cnops, An Introduction to Dirac Operators on Manifolds, Progress in Mathematical Physics, Birkhäuser, Boston, 2002.

    Google Scholar 

  6. S.-L. Eriksson, Integral formulas for hypermonogenic functions, to appear.

    Google Scholar 

  7. S.-L. Eriksson-Bique and H. Leutwiler, Hypermonogenic functions, in J. Ryan and W. Sprößig, eds., Clifford Algebras and Their Applications in Mathematical Physics, Vol. 2, Birkhäuser, Boston, 2000, 287–302.

    Google Scholar 

  8. S.-L. Eriksson and H. Leutwiler, k-hypermonogenic functions, to appear.

    Google Scholar 

  9. S.-L. Eriksson and H. Leutwiler, Some integral formulas for hypermonogenic functions, to appear.

    Google Scholar 

  10. S.-L. Eriksson and H. Leutwiler, Hypermonogenic functions and their Cauchy-type theorems, in Trends in Mathematics: Advances in Analysis and Geometry, Birkhäuser, Basel, 2003, 97–112.

    Google Scholar 

  11. K. Gowrisankran and D. Singman, Minimal fine limits for a class of potentials, Potential Anal., 13 (2000), 103–114.

    Article  MathSciNet  Google Scholar 

  12. K. Gürlebeck and W. Sprössig, Quaternionic Analysis and Elliptic Boundary Value Problems, Birkhäuser, Basel, 1990.

    MATH  Google Scholar 

  13. A. Huber, On the uniqueness of generalized axially symmetric potentials, Ann. Math., 60 (1954), 351–358.

    Article  MathSciNet  Google Scholar 

  14. H. Leutwiler, Modified Clifford analysis, Complex Variables, 17 (1992), 153–171.

    MATH  MathSciNet  Google Scholar 

  15. H. Leutwiler, Best constants in the Harnak inequality for the Weinstein equation, Aequationes Math., 34 (1987), 304–315.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Mitrea, Generalized Dirac operators on non-smooth manifolds and Maxwell’s equations, J. Fourier Anal. Appl., 7 (2001), 207–256.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Qiao, S. Bernstein, S.-L. Eriksson, and J. Ryan, Function theory for Laplace and Dirac-Hodge operators in hyperbolic space, to appear.

    Google Scholar 

  18. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc., 59 (1953), 20–38.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Carlos Berenstein on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this paper

Cite this paper

Qiao, Y., Ryan, J. (2005). Orthogonal Projections on Hyperbolic Space. In: Sabadini, I., Struppa, D.C., Walnut, D.F. (eds) Harmonic Analysis, Signal Processing, and Complexity. Progress in Mathematics, vol 238. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4416-4_9

Download citation

Publish with us

Policies and ethics

Navigation