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Abstract
Interest in just-in-time adaptive interventions (JITAI) has rapidly increased in recent years. One core challenge for JITAI 
is the efficient and precise measurement of tailoring variables that are used to inform the timing of momentary interven-
tion delivery. Ecological momentary assessment (EMA) is often used for this purpose, even though EMA in its traditional 
form was not designed specifically to facilitate momentary interventions. In this article, we introduce just-in-time adaptive 
EMA (JITA-EMA) as a strategy to reduce participant response burden and decrease measurement error when EMA is used 
as a tailoring variable in JITAI. JITA-EMA builds on computerized adaptive testing methods developed for purposes of 
classification (computerized classification testing, CCT), and applies them to the classification of momentary states within 
individuals. The goal of JITA-EMA is to administer a small and informative selection of EMA questions needed to accurately 
classify an individual’s current state at each measurement occasion. After illustrating the basic components of JITA-EMA 
(adaptively choosing the initial and subsequent items to administer, adaptively stopping item administration, accommodating 
dynamically tailored classification cutoffs), we present two simulation studies that explored the performance of JITA-EMA, 
using the example of momentary fatigue states. Compared with conventional EMA item selection methods that administered 
a fixed set of questions at each moment, JITA-EMA yielded more accurate momentary classification with fewer questions 
administered. Our results suggest that JITA-EMA has the potential to enhance some approaches to mobile health interven-
tions by facilitating efficient and precise identification of momentary states that may inform intervention tailoring.

Keywords  Ecological momentary assessment · Just-in-time adaptive intervention · Computerized adaptive testing · 
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Introduction

Interest in the use of mobile Health (mHealth) technolo-
gies has risen substantially among behavioral researchers 
and healthcare practitioners in recent years. Mobile devices 
utilized for mHealth applications (including smartphones, 

tablets, and ambulatory monitoring devices such as wearable 
activity trackers) are sophisticated, user-friendly, and afford-
able. This has created many opportunities for providing 
healthcare in difficult-to-reach and medically underserved 
areas and for the delivery of behavioral, psychological, and 
medical interventions in people’s everyday environments 
(Kaplan & Stone, 2013; Nahum-Shani et al., 2015). For 
example, mHealth tools have been used to send reminders 
to improve medication adherence (Ben-Zeev et al., 2014), to 
encourage exercise and physical activity (Van Dantzig et al., 
2013), and to deliver brief stress management interventions 
in daily life (Loo Gee et al., 2016).

Arguably one of the biggest promises of mHealth inter-
ventions is that they could be designed to deliver treatments 
at precisely those moments in time when patients are most 
in need or may most benefit from them. Such interven-
tion approaches have been termed Ecological Momentary 
Interventions (Heron & Smyth, 2010; Loo Gee et al., 2016; 
Versluis et al., 2016) or just-in-time adaptive interventions 
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(JITAI; Collins et  al., 2004; Nahum-Shani et  al., 2015; 
Nahum-Shani et al., 2018). Although the idea of tailored 
treatment has a long history, the continuous tracking of 
individuals in their daily lives with mHealth technologies 
provides unprecedented opportunities for tailoring the tim-
ing and contents of treatments in real time to the occurrence 
of presumptive risk states or other “opportune moments” 
for each individual. For instance, for interventions promot-
ing healthy eating habits, time periods of elevated stress 
or fatigue can be critical for dietary lapses (Forman et al., 
2019), and delivering interventions when a person’s stress 
or fatigue experiences reach a certain predefined threshold 
value could potentially be most effective for influencing 
a person’s health behavior. Moreover, this threshold may 
well differ from patient to patient and may vary over time, 
and it might be ideal for the delivery of treatments to adapt 
accordingly.

Despite the growing recognition of the rich potential of 
JITAI for mHealth applications, the development and imple-
mentation of these interventions is still in its early stages and 
requires continued multidisciplinary efforts and advances in 
dynamic behavior theories (Spruijt-Metz & Nilsen, 2014), 
study design (Klasnja et al., 2015), intervention techniques 
(Nahum-Shani et  al., 2015), and measurement methods 
(Collins et al., 2004). One core challenge for JITAI is the 
measurement of tailoring variables that are used to inform 
the timing, content, and dosage of interventions for each 
individual (Nahum-Shani et al., 2018). We acknowledge that 
there are many open questions about how to identify effec-
tive tailoring variables that successfully moderate the impact 
of an intervention. In practice, JITAIs are often designed to 
deliver interventions shortly before, during, or after a pre-
sumptive state of risk or opportunity for a given individual 
(Hardeman et al., 2019; Perski et al., 2022).

Ecological momentary assessment (EMA, also called 
experience sampling) methods are indispensable for the 
measurement of these states, and can be combined with 
information from wearable devices that can measure behav-
ioral, physiological, or environmental variables in real time 
using passive sensors (Nahum-Shani et al., 2018). Using 
EMA, patients typically report their current or recent sub-
jective states and experiences multiple times per day on 
custom-programmed mobile electronic devices as they go 
about their normal daily lives (Shiffman et al., 2008). The 
granular data from EMA is integral to the delivery of JITAI 
because it captures short-term, within-person processes that 
cannot be assessed with global retrospective self-reports, 
and because it can address a wide range of subjective experi-
ences that cannot be measured with passive sensor technolo-
gies (Wenze & Miller, 2010). For example, if a JITAI is to 
be triggered by moments in which patients experience high 
levels of stress, fatigue, or negative mood, EMA self-reports 
are routinely used to acquire the necessary information.

Despite the unique opportunities provided by EMA, there 
are significant barriers to the successful and optimal integra-
tion of EMA in JITAI research and practice. EMA is widely 
employed in observational research, but the measurement 
technique in its traditional form was not designed specifi-
cally to facilitate decisions about the timing of momentary 
intervention delivery. In contrast to “pull” interventions 
that make intervention contents available to patients at their 
disposal, JITAI uses a “push” approach by attempting to 
select the most appropriate timing and content of interven-
tions for each individual. Next to a host of EMA design 
considerations (e.g., the temporal density of assessments, 
which contents to measure), this places particularly high 
demands on psychometrically sound EMA measurement 
within individuals.

One of the challenges to the seamless integration of 
EMA into JITAI is the need to keep participant burden low 
while achieving high measurement precision. To be suit-
able for use as tailoring variables, momentary assessments 
are required to have very little measurement error. Common 
EMA measures such as momentary emotion scales with 3–5 
items have been shown to capture within-person fluctuations 
with reliabilities of 0.6 to 0.8 (Cranford et al., 2006; Scott 
et al., 2018). Whereas this level of reliability is often consid-
ered sufficient to detect group-based relationships in obser-
vational research, as noted by Nunnally (1978), higher stand-
ards apply where decisions are made for each individual on 
the basis of specific test scores. Even when reliability is as 
high as 0.9, the standard errors of measurement of observed 
scores are nearly one-third as large as the standard deviation 
of the scores themselves. Imprecision due to measurement 
error in EMA directly translates into inaccurate (false posi-
tive and false negative) decisions about treatment delivery 
in JITAI: the more a measurement is impacted by random 
error, the more will the decisions about when to deliver a 
treatment themselves be random rather than tailored to the 
individual’s changing states (Collins et al., 2004).

An obvious strategy to increase measurement precision 
(i.e., reduce random error) is to increase the number of items 
in a given EMA scale (Calamia, 2019). However, a chal-
lenge associated with JITAI is participant burnout, that is, 
the risk that individuals lose motivation to engage in the 
intervention over time or that they abandon the intervention 
altogether (Nahum-Shani et al., 2018). Keeping EMA sur-
veys very brief is essential to limit response burden (Intille 
et al., 2016). Long EMA surveys have been related to lower 
participant compliance in observational studies (Eisele et al., 
2020), and may contribute to intervention fatigue and par-
ticipant burnout in JITAI.

These two aspects of EMA measurement, the need for 
brief EMA surveys while achieving high levels of meas-
urement precision, tug against each other and often require 
interventionists to make dissatisfying compromises when 
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choosing or designing EMA surveys for use in JITAIs. 
However, it is also the case that conventional EMA admin-
istration methods are not optimized to address the needs of 
JITAI. Whereas JITAIs are designed to adapt to the indi-
vidual’s changing states, conventional EMA administra-
tion is inflexible in the sense that the same set of questions 
are administered to respondents regardless of their current 
state. We propose that a strategy where the specific questions 
administered in EMA adapt to the individual’s changing 
states would be more efficient when used to make treatment 
decisions in JITAIs.

Accordingly, we propose just-in-time adaptive EMA 
(JITA-EMA) as an assessment technique to increase the 
efficiency of EMA; we believe this technique may have 
particular value when used as a tailoring variable in JITAI. 
The goal of JITA-EMA is to administer the smallest num-
ber and optimal selection of momentary questions neces-
sary to enable the classification of momentary states with 
high accuracy at each measurement occasion. To accom-
plish this, JITA-EMA builds on computerized adaptive test-
ing (CAT) methods developed for purposes of classifica-
tion (also called computerized classification testing, CCT) 
(Thompson, 2007). These methods have been successfully 
implemented to make categorical (“pass vs. fail,” or “treat 
vs. do not treat”) decisions in educational settings for many 
years. Thus, a framework for many components of JITA-
EMA is already available, even if not yet incorporated into 
mHealth settings involving data collection with EMA (Gib-
bons, 2017; Rose et al., 2012). Specifically, whereas CCT 
has been developed mainly for between-person decisions 
(e.g., who meets a given criterion to receive a treatment), 
we propose JITA-EMA as a dynamic extension of CCT to 
classify momentary states that may inform JIT treatment 
implementation.

We emphasize that even though measurement error sets 
an upper limit for the precision of intervention tailoring 
decisions, psychometrically sound and efficient EMA meas-
urement by itself does not ensure more effective tailoring of 

interventions. For example, one important gap in the devel-
opment of optimal JITAIs in many areas is a shortage of 
empirical evidence about which constructs adequately cap-
ture a state of momentary risk or opportunity for change or 
predict a pre-specified proximal outcome (e.g., smoking in 
the next few minutes, or increased symptom severity on the 
next day) (Nahum-Shani et al., 2015). If the constructs used 
as tailoring variables in an intervention are not related to a 
relevant proximal outcome, then no level of EMA measure-
ment precision will help with effective intervention tailoring. 
The purpose of the proposed psychometric approach is to 
develop techniques for the assessment of momentary self-
reported experiences to be more closely aligned with the 
goals of adaptive intervention delivery by achieving accurate 
classification of momentary states with little participant bur-
den, as one of many strategies to facilitate improved treat-
ment tailoring decisions in JITAI.

In the remainder of the paper, we first present the basic 
components of JITA-EMA. We then present results from 
two simulation studies to explore the potential usefulness 
of the method for more efficient classification of momentary 
states based on EMA. We end with a discussion about poten-
tial opportunities and challenges when using JITA-EMA in 
JITAI research and practice.

Components of JITA‑EMA

The proposed building blocks of JITA-EMA are schemati-
cally illustrated in Fig. 1. Treatment decisions in JITAI are 
most commonly based on “if-then” rules, which control that 
an intervention is offered only if a (binary) criterion is met 
(e.g., if current fatigue level > cutoff then deliver a momen-
tary intervention) (Nahum-Shani et al., 2018). Accordingly, 
JITA-EMA should both efficiently quantify an individual’s 
momentary states and efficiently classify each momentary 
state with respect to a dynamically changing criterion state. 
Heuristically, we propose that this can be achieved following 

Fig. 1   Components of just-in-time adaptive ecological momentary assessments (JITA-EMA)
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principles of effective interpersonal communication, that is, 
by administering EMA questions in ways that resemble a 
goal-directed transactional process (Hargie, 2011):

(1)	 Initial item selection: Rather than treating the individ-
ual as a “blank slate,” JITA-EMA starts with an EMA 
question that is tailored to prior knowledge about the 
person’s internal states in similar situations.

(2)	 Subsequent item selection: Rather than asking a pre-
determined set of questions, JITA-EMA strategically 
administers EMA questions tailored to a person’s 
answers to previous questions.

(3)	 Stopping rule: Rather than asking a fixed number of 
questions, JITA-EMA stops administering EMA ques-
tions as soon as, and no later than, the individual’s cur-
rent state has been classified with requisite confidence.

(4)	 Classification cutoff: Rather than applying the same 
standards to all people at all times, JITA-EMA allows 
the tailoring of cutoffs used for classification based on 
prior information about the person and situation.

Psychometric underpinnings of JITA‑EMA

The components of JITA-EMA are rooted in item response 
theory (IRT), which forms the basis for CAT and CCT. IRT 
methods have a long history in educational testing and have 
more recently been successfully adopted for patient-reported 
outcome measurement as implemented in PROMIS® (Cella 
et al., 2010), Neuro-QoL (Gershon et al., 2012), or SCI-QOL 
(Tulsky & Kisala, 2015). To date, patient-reported outcomes 
with IRT have almost exclusively focused on traditional 
between-person measurement contexts, but IRT methods are 
applicable to within-person measurement with EMA (Fay-
ers, 2007; Rose et al., 2012; Wainer, 2000). The cornerstone 
of IRT measurement is an item bank: a collection of ques-
tions that represent a well-defined, typically unidimensional 
construct (e.g., fatigue, negative affect). Much like confirma-
tory factor analysis, IRT represents the construct of interest 
as a latent variable, called “theta,” that can be estimated 
from responses to these questions. The probability of a per-
son choosing a given response on any item in the bank is a 
mathematical function of the person’s state (their “theta” 
level) and specific parameters of the items (threshold and 
discrimination parameters) (Fayers, 2007).

Two aspects of IRT are critical for item administration 
via CAT. First, when the parameters of the items in a bank 
are known (because the items have been rigorously tested to 
behave in the same way across groups and individuals, and 
have been normed in a suitable sample), any combination 
or subset of items from the bank produces scores on the 
same metric, regardless of how many and which items are 
administered. This sets the stage for strategic item selection. 
Second, IRT estimates information functions that explicitly 

acknowledge that some items are more informative (i.e., 
more reliable, with less measurement error) at higher theta 
levels, whereas other items are more informative at lower 
theta levels (unlike classical test theory, where an item is 
assumed to have the same measurement precision at all lev-
els). This opens the door for CAT and CCT algorithms, in 
which those items are consecutively selected that are deemed 
most informative given the current “best guess” about the 
individual’s true theta level, while items that are presumably 
less relevant are omitted (Wainer, 2000; Weiss, 2004; Weiss 
& Kingsbury, 1984). As described next, JITA-EMA builds 
on these basic mechanisms that are akin to all CAT and CCT 
assessments and adapts them to provide efficient assessment 
of dynamically changing states within individuals.

Using prior information for initial item selection  Every CAT 
starts off with a “best guess” about the person’s theta level 
in order to decide which item from the item bank should 
be administered first (Weiss & Kingsbury, 1984). In tradi-
tional (e.g., cross-sectional) measurement settings, where 
little to nothing is generally known about an individual at 
the outset of an assessment, CATs are often initialized using 
an item that is most informative for the “average” person, 
such that the first item is not tailored to the individual or 
situation (Choi et al., 2010) (even though procedures for 
tailored CAT initialization based on “collateral” information 
about a person exist; van der Linden, 1999). In contrast to 
settings that involve assessment of an individual at a single 
time point, JITA-EMA requires that the CAT be initialized 
repeatedly, that is, at the beginning of each EMA prompt. 
This simultaneously renders the choice of the initial item 
more important and provides many more opportunities for 
tailoring the selection of the first item to the individual and 
current situation.

Although little may be known about a person at the begin-
ning of a JITAI period, this changes quickly as intensive lon-
gitudinal (EMA) assessments accumulate. After a few EMA 
prompts have occurred, an informed guess can be developed 
about each person’s general or average theta level compared 
to other individuals on the construct of interest. As more 
momentary assessments accumulate over time, it becomes 
possible to derive estimates of person-by-situation inter-
actions which can be used to guess an individual’s typical 
state within the current situation. For example, to initialize 
a momentary fatigue assessment, JITA-EMA could capital-
ize on the fact that fatigue has a typical diurnal cycle (which 
may differ from person to person) (Stone et al., 2006), and 
initialize a CAT using an item that best reflects the predicted 
fatigue level of that person at the time of day the assess-
ment takes place, based on their ideographically estimated 
diurnal cycle. In addition, multiple sources of information 
(e.g., momentary reports of fatigue, affect, activities) can be 
taken into account for initial item selection when analytically 
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combined (e.g., using multivariate time series models; van 
der Krieke et al., 2015).

Adaptive selection of subsequent items  After a respondent 
answers the first item administered in a given assessment 
session (or EMA prompt), a CAT algorithm reevaluates 
the person’s most likely theta level and applies the presum-
ably most informative item for the current “interim theta” 
estimate (Choi et al., 2010; Fayers, 2007). This process is 
repeated for each subsequent item administered. At this 
stage of the assessment, JITA-EMA is no different from 
CAT administration in other research or practical settings. 
However, due to the high participant burden associated with 
EMA, and the desire for “ultra-brief” measurements with no 
more than 2–5 items (or even a single item) per construct 
administered at each prompt, there is a greater urgency for 
stopping the administration of items (i.e., to estimate a “final 
theta” value for the person’s current state) adaptively and as 
soon as reasonably possible.

Adaptive stopping rules  CAT algorithms can be pro-
grammed with different “stopping rules” that tell the pro-
gram when to end an assessment and to record the final 
theta value (Wainer, 2000; Weiss, 2004; Weiss & Kings-
bury, 1984). The simplest rule is to stop after a predefined 
total number of items have been administered. This “fixed” 
stopping rule is the same as what is implicitly applied 
when nonadaptive assessment methods are used. A second, 
“variable” rule is to stop administering items whenever the 
person’s theta level is estimated with a predefined level of 
measurement precision (a sufficiently small measurement 
error or confidence interval). This second stopping rule is 
attractive in many observational settings, because it attempts 
to attain a uniformly high measurement precision across the 
full range of possible theta values (e.g., across all possible 
fatigue levels).

When the goal is to classify states for sufficiently accu-
rate treatment tailoring decisions as in JITA, however, a uni-
formly high measurement precision may not be required. For 
JITA-EMA to be most efficient, we recommend an alterna-
tive “variable” stopping rule that is commonly applied in 
CCT. This stopping rule administers items until a classifica-
tion decision is made with sufficient (e.g., 95%) confidence, 
regardless of the measurement precision of the observed 
theta value (Thompson, 2007). The idea is that high meas-
urement precision (low measurement error) of the theta 
value is needed if a person’s current theta level is close to the 
cutoff score (slightly above, or slightly below the threshold); 
in this case, administering more items is desirable to achieve 
accurate classification. On the other hand, lower measure-
ment precision (with higher measurement error of the theta 
value) is entirely tolerable if a person’s theta level is esti-
mated to fall into ranges that are far from (very much above 

or below) the classification threshold; in this case, admin-
istering only very few items may suffice to meet the goal of 
classifying a person’s current state with high confidence.

We note that stopping rules in CCT generally use sym-
metric confidence bounds (e.g., a classification decision 
could be made when the classification cutoff is either below 
the 2.5th percentile or above the 97.5th percentile of the 
estimate), such that false positive and false negative classi-
fication decisions tend to be given equal weight. Depending 
on the type of intervention to be provided, this may not be 
desirable in all instances. An interventionist may deem the 
potential benefits of identifying true positives as high and 
the costs associated with false positives as low, for exam-
ple, when a positive classification decision triggers access 
to a support hotline which patients who currently do not 
need the support can readily dismiss. For another interven-
tion, identifying true negatives may be especially important 
and the potential costs of false positives may be deemed 
high, for example, when there is a high risk that patients 
will get annoyed or frustrated when interventions are repeat-
edly offered at inopportune or inconvenient times. Specific 
needs to avoid false positive or false negative classification 
decisions could be taken into consideration when applying 
variable stopping rules in CCT.

Dynamically tailoring the classification cutoffs  CCTs 
employed in educational testing typically hold the cutoffs 
for classification constant across individuals to ensure equal 
standards for all individuals. Such uniform cutoffs, albeit 
not tailored to the individual, are also commonly applied 
in JITAIs (see Perski et al., 2022). For example, at each 
EMA prompt, a momentary fatigue level of one standard 
deviation above the population mean could be classified as 
“elevated” fatigue, which could be used to trigger a momen-
tary intervention. However, a core feature of JITAI is that 
the decisions about when to intervene adapt to the dynami-
cally changing states of each individual (Nahum-Shani et al., 
2018). Although not a genuine component of CAT in other 
areas, prior information in EMA applications can be directly 
incorporated in CAT algorithms to dynamically tailor the 
cutoffs for the classification of current states (Chalmers, 
2016). For example, a dynamically tailored cutoff in JITA-
EMA could be defined as a momentary fatigue level that is 
higher than usual for the individual and present time of day, 
given the fatigue diurnal cycle estimated from the previous 
EMA prompts for that individual. More complex tailored 
cutoffs could also be developed, such as cutoffs considering 
specific changes within the individual (including short-term 
shifts, changes within a predefined moving time window, or 
cumulatively over the course of a study) (see Smyth et al., 
in press). We note that even though it is possible to apply 
dynamically tailored cutoffs in CAT, there are many intri-
cate decisions about how to operationally define appropriate 
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cutoffs for a given application and how to analytically derive 
them. Addressing these questions is beyond the scope of 
this paper.

It is also important to note that dynamically tailored clas-
sification cutoffs that are empirically derived from a person’s 
data contribute additional measurement error to classifica-
tion decisions. In the fatigue example, a person’s diurnal 
cycle will be estimated with uncertainty (i.e., with sampling 
variance), and this source of error will be more pronounced 
for individuals with diurnal cycles that are less consistent 
and more variable from day to day. Consequently, decisions 
about treatment delivery in JITAI can be impacted not only 
by unreliable measurement at each EMA prompt, but also by 
unreliability in decisions about dynamically tailored cutoffs. 
This is likely to make efficient yet precise classifications 
of an individual’s changing states—the purpose of JITA-
EMA—all the more important.

Simulation studies

We conducted two simulation studies to evaluate whether 
JITA-EMA improves the efficiency and accuracy of momen-
tary classification decisions compared to usual EMA item 
selection methods. The advantage of a simulation study over 
an empirical study is that the true momentary states and the 
true cutoff values for classification are known in a simula-
tion. This makes it possible to directly compare the true clas-
sifications with those that would be obtained with different 
item selection methods. The R package mirtCAT (Chalmers, 
2016) was used for the simulations. This versatile package 
can be used to administer and simulate both adaptive and 
nonadaptive tests using IRT, and to build graphical user 
interfaces for administering CATs in real time. R scripts of 
the simulations can be accessed at https://​osf.​io/​jte5h/.

Overview of the simulations

Both simulations focus on a representative use-case regard-
ing the assessment of momentary fatigue, a self-reported 
experience with broad applicability as a tailoring variable 
in JITAIs (Ben-Zeev et al., 2014; Goldstein et al., 2017). 
Elevated daytime fatigue is a significant health concern and 
represents a symptom or risk factor for various physical 
and mental health problems such as depression and anxiety 
(DeLuca, 2005). It is also generally believed that moments 
of exacerbated daytime fatigue make individuals temporally 
more vulnerable to poor self-care behavior and increase the 
likelihood of minor and major accidents. In this use-case 
scenario, we assume that moments of elevated daytime 
fatigue represent a potential tailoring variable for a momen-
tary intervention timing decision. The specific decision 

made is outside of the purview of JITA-EMA and accord-
ingly, the simulations are agnostic to the treatment decision 
(e.g., high daytime fatigue could be viewed as a risk state 
that may trigger an intervention, or it could be viewed as a 
state of low receptivity where intervention delivery should 
be withheld).

The two simulations should be viewed as examples to 
illustrate the various components of JITA-EMA as an item 
selection method, not as a prescription for an ideal imple-
mentation in applied settings. Our first simulation (study 1) 
examines a hypothetical setting in which a researcher adopts 
a uniform cutoff for the classification of momentary fatigue 
states. This simulation does not consider dynamic cutoffs 
and the goals of the simulation were to evaluate the perfor-
mance of measurement aspects that are genuine to CCT: 
the potential benefits of adaptive stopping rules over fixed-
length EMA assessments and the benefits of adaptive over 
nonadaptive (initial and subsequent) item selection. The cut-
off was held the same for each person and situation, where 
we assume that a researcher is interested in the detection of 
momentary fatigue at a level that is likely debilitating for 
most individuals. Correspondingly, momentary fatigue was 
considered above the cutoff if the observed score exceeded 
a z-score of 1 (i.e., approximately the 85th percentile of 
scores) on a fatigue measure that we assume has been pre-
viously calibrated and normed using IRT.

The second simulation (study 2) examines a more com-
plex situation that incorporates all of the proposed JITA-
EMA components and where treatment decisions are based 
on dynamically tailored (by individual and time of day) clas-
sification cutoffs. Here, we assume that a researcher is inter-
ested in the detection of elevated daytime fatigue, using cut-
offs that are tailored to a person’s idiographic diurnal cycle 
of fatigue. The fatigue diurnal cycles were estimated from 
the fatigue theta scores that had been previously observed 
for a given person up to the person’s current moment in 
the study. Elevated daytime fatigue was defined as fatigue 
levels between 6 AM and 6 PM (considered daytime) that 
are at least half a (within-person) standard deviation higher 
than expected for the individual at a given time of day (half 
a standard deviation was chosen because it is considered a 
benchmark for minimally important differences for many 
symptoms and experiences, see Norman et al., 2003).

Generation of “true” fatigue values

Our aim was to evaluate the accuracy and efficiency of 
momentary classifications a researcher would have obtained 
with different methods for EMA item selection using a real-
world example. For this reason, rather than generating true 
momentary fatigue values from a hypothetical population 
(as would be done in a Monte Carlo simulation), we used 
momentary fatigue data from a real data set to represent 

https://osf.io/jte5h/
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the “true” fatigue states, that is, we assume that these were 
measured without error. The fatigue values were derived 
from a pre-existing EMA data set of 106 patients with rheu-
matoid chronic pain, where momentary fatigue data had 
been collected five to six times per day for up to 28 days (for 
details, see Broderick et al., 2009; Broderick et al., 2008). 
Compliance with the EMA protocol was high, with patients 
completing on average 91% of the EMA prompts (Broderick 
et al., 2009). This provided a total of 16,587 “true” momen-
tary fatigue values from the 106 patients (see Fig. 2A). We 
standardized (z-scored) the momentary fatigue values (based 
on the sample’s overall mean and variance) to place them on 
a metric that is most common in IRT (mean = 0, SD = 1 for 
theta values in IRT).

Generation of “true” classification cutoffs

For study 1, the classification cutoff was set at 1 SD above 
the average fatigue level (a z-score of 1.0, shown in Fig. 2A).

For study 2, because the simulation included dynamic 
classification cutoffs that would have been empirically esti-
mated for each individual up to a given point in the study, 
it was necessary to generate “true” fatigue diurnal cycles 
for each individual to be able to compare the observed and 
true classifications of momentary fatigue states. The diurnal 
cycles were derived from the true momentary fatigue values 
available for each person in the Broderick et al. (2009) EMA 
data set. Many statistical models to estimate cyclic changes 
(diurnal cycles) exist (Chow et al., 2007). For the present 

illustration, we estimated a “cosinor” regression model using 
the sine and cosine of time (in hours) of day as predictors, 
separately for each individual. The following regression 
model was estimated:

where thetai are the momentary fatigue values, β0 is an 
intercept, β1 and β2 are the coefficients associated with the 
sine and cosine of time of day (HOUR), and ri is a residual 
term. The true classification cutoffs for each individual and 
time of day were defined as the model-predicted values +0.5 
(residual within-person) SDs. As shown in Fig. 2B, individu-
als differed markedly in levels and temporal patterns of the 
resulting “true” dynamic cutoffs.

Momentary fatigue items used in the simulations

As explained above, the implementation of JITA-EMA 
requires that subsets of items can be selected from a larger 
item bank. The 13 fatigue items from the Functional Assess-
ment of Chronic Illness Therapy–Fatigue scale (FACIT-F) 
represent such an item bank and they were used for the pre-
sent simulations. FACIT-F items have been calibrated using 
IRT methods (Lai et al., 2003), can be administered using 
fixed-length or CAT methods, and are included in the widely 
used PROMIS fatigue instrument (Cella et al., 2010; Lai 
et al., 2011). All items use a five-point numeric rating scale 
(not at all to very much). Items are worded in present tense 
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Fig. 2   True fatigue values and true classification cutoffs for the simu-
lations. A Gray dots represent the true momentary fatigue values for 
both simulation studies; the solid horizontal line indicates the uni-
form classification cutoff for study 1. B Solid horizontal lines indicate 

the dynamic classification cutoffs for study 2, where each solid line is 
for an individual; dashed vertical lines reference the time period from 
6 AM to 6 PM used for classification in study 2
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(e.g., “I feel tired”, “I feel listless [washed out]”), consistent 
with the wording of many EMA instruments. The mirtCAT 
package was used to simulate plausible response patterns 
for the FACIT-F items given the true momentary fatigue 
theta values and the IRT item parameters documented for 
the FACIT-F (Lai et al., 2011).

EMA item selection methods tested

Five different EMA item selection methods were examined. 
For each method, we used mirtCAT to simulate the adminis-
tration of selected FACIT-F items and to generate observed 
fatigue theta scores (i.e., “scale” scores) by individual and 
EMA prompt.

1.	 Fixed length, two items: In this condition, exactly two 
fatigue items were administered at each EMA prompt 
to simulate a very brief EMA assessment strategy. The 
items were randomly selected from the 13 FACIT-F 
items at each prompt.1

2.	 Fixed length, three items: Exactly three randomly 
selected FACIT-F items were administered at each EMA 
prompt.

3.	 Fixed length, five items: Exactly five randomly selected 
FACIT-F items were administered at each EMA prompt. 
Five items would arguably be considered a longer 
assessment strategy for most JITAI applications.

4.	 Variable length: The purpose of this condition was to 
examine the potential efficiency benefit of using an adap-
tive stopping rule, but without adaptive item selection. 
The maximum number of items to be administered was 
set at 5 (randomly selected from the FACIT-F as for the 
fixed-length conditions). However, rather than adminis-
tering a fixed number of items, the EMA assessment was 
terminated as soon as the 95% confidence interval of the 
estimated momentary fatigue level did not include the 
cutoff for classification.

5.	 JITA-EMA: This condition used the same variable 
length stopping rule as condition 4, but additionally 
applied adaptive (initial and subsequent) item selection 
as proposed for JITA-EMA. Item selection was based 
on a CAT algorithm that adaptively administered those 
FACIT-F items that were deemed optimal (i.e., that had 

the greatest potential to minimize the standard error of 
the estimated fatigue level) using the maximum expected 
information criterion (Choi & Swartz, 2009). For the 
selection of the first (initial) item at each EMA prompt, 
the CAT was initialized using the momentary fatigue 
theta score from the patient’s previous EMA prompt 
(study 1), or using an estimate of the person’s typical 
fatigue level at the present time of day calculated from a 
cosinor (with sine and cosine of time of day) regression 
model fitted to all fatigue theta scores that had been pre-
viously obtained for that patient up to the current EMA 
prompt (study 2).

Observed classification

In each of the five conditions, observed momentary fatigue 
theta scores were computed at each EMA prompt from the 
simulated responses to the specific combination of items 
administered. The theta scores were derived using maxi-
mum a posteriori (MAP) estimation in mirtCAT. MAP is a 
Bayesian scoring procedure that requires a prior distribution 
and a normal prior (SD = 1.0) was used for all conditions. 
In study 1, the observed fatigue theta scores were classi-
fied as above the cutoff if they exceeded the fixed (uniform) 
value of 1.0, and below the cutoff otherwise. In study 2, 
the observed theta scores were classified using dynamically 
tailored cutoffs that were estimated from the information 
about an individual’s fatigue diurnal cycle that a researcher 
would have available at a given point of the study. That is, at 
each EMA prompt, a cosinor regression model was fitted to 
the observed theta scores obtained at all prompts that would 
have been administered to that individual since the begin-
ning of the EMA study up to (and excluding) the current 
EMA prompt; the person’s model-predicted (i.e., expected) 
fatigue level for the present time of day was recorded 
together with the residual SD of all previous fatigue scores, 
and the observed fatigue score for the present prompt was 
classified as above the cutoff if it was 0.5 SDs higher than 
the expected fatigue level. EMA prompts administered on 
the first 2 of the 28 days were considered a “run-in” period 
and were not used for classifying decisions, nor were data 
collected outside of the 6 AM to 6 PM daytime period.2 
Observed scale scores obtained during these periods served 
only to estimate an individual’s dynamic cutoff values. For 
the variable-length EMA and JITA-EMA methods, the stop-
ping rule during these periods was a standard error of less 1  For the fixed-length methods, instead of administering a random 

subset of items, we could have (arbitrarily) selected the same sub-
set of items from the 13-item FACIT-F to be administered at each 
prompt. Even though this would more closely mirror current practice 
of EMA measurement, the results would have been influenced by the 
specific subset of items chosen. Randomly selecting a subset of items 
approximates the expected average performance of traditional fixed-
form EMA strategies in which any given subset of two, three, or five 
items could have been selected for administration in an EMA study 
(see Silvia et al., 2014).

2  We do not suggest that a “run-in” period of only 2 days would be 
considered ideal in most real applications. We selected 2 days as the 
minimum run-in period after which it was possible to fit a cosinor 
regression model to the fatigue scores observed for each person at the 
previous prompts (and to estimate dynamic classification cutoffs for 
the purposes of the simulation).
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than 0.3 (a common CAT stopping rule, equivalent to a reli-
ability of 0.90; Thissen, 2000).

Performance criteria and analyses

The purpose of JITA-EMA is to increase the efficiency of 
EMA in JITAI, whereby an efficient EMA item selection 
method should allow accurate classification with minimal 
items. Accordingly, the two performance criteria were the 
(1) number of items administered per prompt and (2) the 
accuracy of the observed classifications in each method.

The number of items administered was known a priori 
for fixed-length EMAs (i.e., exactly two, three, or five items 
were administered), but not for the variable-length and JITA-
EMA methods. For these two methods, multilevel “null” 
models (no predictors added, with the number of items per 
prompt serving as dependent variable) with random inter-
cepts were used to estimate the mean, between-person vari-
ance, and within-person variance (across prompts) in the 
number of items administered.

Classification accuracy was evaluated by examining the 
sensitivity and specificity of each item selection method. 
Sensitivity measures the proportion of momentary fatigue 
states correctly identified as above the cutoff among all 
moments that were truly above the cutoff (true positive rate). 
Specificity measures the proportion of momentary fatigue 
values correctly identified as below the cutoff among those 
that were truly below the cutoff (true negative rate). Analy-
ses of sensitivity and specificity were conducted using logis-
tic multilevel models as appropriate for clustered binary data 
(with multiple momentary classifications nested in individu-
als). Specifically, we estimated random intercepts models 
of observed classifications (as dependent variable) among 
those moments that were truly above (for sensitivity) or truly 
below (for specificity) the cutoff (see Genders et al., 2012). 
In these models, the estimated intercepts represent the logit 
sensitivity and logit specificity, respectively, and transform-
ing the logits into probabilities yields the median sensitivi-
ties and specificities across individuals. To test whether the 
logit sensitivities and specificities differed between the EMA 

item selection methods, multivariate logistic multilevel mod-
els were used in which the observed classifications for dif-
ferent item selection methods served as multivariate (i.e., 
correlated) dependent variables.

In addition to sensitivity and specificity, we also exam-
ined Cohen’s kappa to obtain an overall summary measure 
of agreement between the observed and true momentary 
classifications for each item selection method. Kappa is fre-
quently used to index the quality of binary classifications 
when comparing a diagnostic test with a gold standard (Feu-
erman & Miller, 2008). The kappa statistic can be calculated 
as a function of sensitivity, specificity, and prevalence values 
(see Feuerman & Miller, 2008; Thompson & Walter, 1988), 
and we used this property of the statistic to derive kappa 
directly from the model parameters of the logistic multilevel 
models.3

The multilevel models were estimated in Mplus version 
8.7 (Muthén & Muthén, 2017) using Bayesian parameter 
estimation with the program’s default noninformative priors. 
P-values below .05 were considered statistically significant.

Study 1 results

Number of items administered

The variable-length and JITA-EMA methods were pro-
grammed to administer a maximum of five items per EMA 
prompt, but both on average stopped when significantly 
less than three items were administered (see Table 1). The 

Table 1   Mean number of items administered, sensitivity, specificity, and kappa by EMA item selection method in study 1

Note. Values in squared brackets are 95% credible intervals. Sensitivity, specificity, and kappa values with different superscripts are significantly 
different between EMA item selection methods at p < .05

Mean number of items per 
prompt

Sensitivity Specificity Kappa

Two items fixed 2.00 .63 [.59;.66] a .97 [.96;.98] a .55 [.45;.63] a

Three items fixed 3.00 .71 [.68;.74] b .98 [.97;.98] a .61 [.49;.70] b

Five items fixed 5.00 .77 [.74;.80] c .99 [.98;.99] b .76 [.67;.81] cd

Variable length 2.58 [2.42; 2.75] .73 [.69;.77] b .99 [.98;.99] b .72 [.62;.78] c

JITA-EMA 2.30 [2.13; 2.46] .81 [.78;.83] d .99 [.98;.99] b .78 [.68;.83] d

3  Kappa can be expressed as κ = [2Pr(1–Pr)(Se+Sp–1)]/[Pr2+(1– 
Pr)2+(1–2Pr)(PrSe–(1–Pr)Sp)], where Se represents sensitivity, Sp 
represents specificity, and Pr represents prevalence (i.e., the prob-
ability of moments being truly above the cutoff). We applied this 
formula using the MODEL CONSTRAINTS feature implemented in 
Mplus software to derive kappa (with 95% credible intervals) from 
the estimated between-person intercepts of logit sensitivity, specific-
ity, and prevalence in logistic multilevel models with linear parameter 
constraints. This also allowed for comparisons of (correlated) kappas 
across EMA item selection methods based on multivariate logistic 
multilevel models.
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variable-length method administered a mean of 2.58 items 
per prompt, and JITA-EMA a mean of 2.30 items (the dif-
ference in means was significant at p < .01). Specifically, 
the variable-length method stopped after the very first item 
for 40.5% of the prompts, after two items for 18.4%, three 
items for 8.9%, four items for 4.9%, and after five items for 
27.3%. JITA-EMA stopped after the first item for 52.5% of 
the prompts, after two items for 15.1%, three items for 4.5%, 
four items for 4.3%, and five items for 23.6% of the prompts. 
The number of items administered varied both between per-
sons (SD = .87 for variable-length, SD = .84 for JITA-EMA) 
and within persons (SD = 1.43 for variable-length, SD = 
1.45 for JITA-EMA), where the within-person variation 
was more pronounced and accounted for 73% (variable-
length) and 75% (JITA-EMA) of the total variance. This 
indicates that the number of items administered varied more 
by moment than by person.

Classification accuracy

As shown in Table 1, for the different fixed-length meth-
ods, administering more items per prompt was associated 
with greater classification accuracy. Median sensitivities 
significantly increased from 63% (2 items) to 71% (3 items) 
and to 77% (5 items), specificities significantly increased 
from 97% (2 items) to 98% (5 items),4 and kappa signifi-
cantly increased from .55 (2 items) to .76 (5 items fixed-
length). The variable-length method yielded 73% specific-
ity, 99% specificity, and kappa = .72, comparable with or 
significantly exceeding (for sensitivity and kappa) the values 
obtained for the three-item fixed-length assessment, but not 
the five-item version. Finally, JITA-EMA yielded 81% sen-
sitivity, 99% specificity, and kappa = .78, comparable with 
or significantly exceeding (for sensitivity) the values for the 
five-item fixed-length assessment (see Table 1).

To compare the magnitude of individual differences in 
classification accuracies across EMA item selection meth-
ods, we estimated individual-specific sensitivities and spe-
cificities from the logistic random effects models and plot-
ted their distributions for each method. As shown in Fig. 3, 
the between-person variance of sensitivities was compara-
ble for the two-item (interquartile range, IQR = 59–66%), 
three-item (IQR = 66–74%), five-item (IQR = 73–80%), and 
JITA-EMA (IQR = 77–83%) methods. A wider between-
person variance was evident for the specificities when using 
the variable-length method (IQR = 65–79%); this suggests 
that, while the variable-length method had higher specificity 
rates than two-item fixed-length EMA on average, it yielded 

a wider dispersion of sensitivities across persons than other 
methods. The between-person variation in specificities was 
similar across methods (see Fig. 3).

To illustrate the differences in the performance of the item 
selection methods, we graphically inspected the reliabilities 
(the standard errors of measurement, SEM) of momentary 
fatigue assessments for each method. Figure 4 shows the 
SEM (y-axis) plotted against the intensity levels of the true 
momentary fatigue scores (x-axis) by classification status, 
where the coloring of the dots indicates the number of items 
administered at the EMA prompt. As would be expected, 
increasing the number of items using fixed-length methods 
with two, three, or five EMA items reduced the SEM (i.e., 
increased the reliability of assessments) across the full range 
of true fatigue intensity levels, including those moments at 
which fatigue was far from the cutoff and at which precise 

Fig. 3   Box-and-whisker plots of individual-specific classification 
sensitivities (top) and specificities (bottom) across the five conditions 
in study 1. Black dots represent the means of the estimated sensitivi-
ties and specificities. The horizontal line in each box represents the 
median, the length of each box represents the interquartile range, 
whiskers represent the 5th and 95th percentiles, and circles represent 
values below the 5th and above the 95th percentile

4  The specificity (true negative rate) of classifications is naturally 
high in study 1 given the high classification cutoff of 1 z-score above 
the mean fatigue value results in a high true negative rate.
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assessment is unnecessary for accurate classification. The 
variable-length method successfully administered only 
one or two items at those moments at which fatigue levels 
were not near the cutoff, with a wide spread of SEMs across 
prompts. Compared to the variable length method, JITA-
EMA yielded smaller SEMs for any given number of items 
administered, suggesting that it was successful at adaptively 
selecting those items that most efficiently reduced the SEM.

Study 2 results

In this study using dynamically tailored cutoffs, the effi-
ciency of momentary data collection may not only differ 
across item selection methods, but it may also change over 
time as more information is accumulated about each indi-
vidual’s dynamic cutoff values over the course of a study. 
For this reason, we examined the performance of the EMA 
item selection methods overall and separately for each week 
(i.e., weeks 1–4) of the study.

Number of items administered

On average across all 4 weeks, the variable-length method 
administered a mean of 3.41 items per prompt, and JITA-
EMA a mean of 2.98 items (see Table 2; the difference 
between the two methods was significant at p < .01), with 
minimal differences across weeks (variable-length: range = 
3.37 to 3.42 items; JITA-EMA: range = 2.97 to 3.00 items). 
For both methods, the number of items administered showed 
much more pronounced within-person variation (SD = 1.42 
for variable-length, SD = 1.43 for JITA-EMA) compared to 
the between-person variation (SD = .42 for variable-length, 
SD = .48 for JITA-EMA); the within-person variation 
accounted for 92% (variable-length) and 90% (JITA-EMA) 
of the total variance. Thus, even though some respondents 
received on average more EMA items to complete than oth-
ers, the number of items delivered differed mostly across 
prompts within individuals with the cutoffs being tailored 
to each individual in this study.

TN                                     FN    TN                                    FN    TN                                    FN    TN                                    FN    TN                                     FN
FP                                      TP    FP                                     TP     FP                                    TP    FP                                      TP    FP                                      TP

Fig. 4   Standard errors of measurement by true fatigue scores for dif-
ferent numbers of items administered in each of the five conditions of 
study 1. TN = true negative, FN = false negative, FP = false positive, 
TP = true positive. True fatigue levels smaller than 1.0 (left of the 

dotted vertical lines) are truly below the cutoff, and true fatigue levels 
at or exceeding 1.0 (right of the dotted vertical lines) are truly above 
the cutoff
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Classification accuracy

As shown in Table 2, overall across all study weeks, admin-
istering more items using the various fixed-length methods 
yielded median sensitivities ranging from 68% (2 items) to 
78% (5 items), specificities ranging from 86% (2 items) to 
88% (5 items), and kappas ranging from .54 (2 items) to .66 
(5 items). The variable-length method showed accuracies 
in between those of the three- and five-item fixed-length 
methods. JITA-EMA yielded the highest classification accu-
racy, with 80% sensitivity (significantly exceeding all other 
methods except five-items fixed-length), 90% specificity 
(significantly exceeding all other methods), and kappa = 
.70 (significantly exceeding all other methods).

Examining the classification accuracies for each of the 
4 study weeks, we found that the sensitivities, specificities, 
and kappa values were generally lower for week 1 compared 

to the subsequent weeks (see Fig. 5). This pattern was simi-
lar for all EMA item selection methods. Despite only admin-
istering 2.97 to 3.00 items per prompt, however, JITA-EMA 
consistently performed as well or better than a five-item 
fixed-length assessment at each week.

Supplemental analyses: precision of estimated dynamic 
cutoff values

As explained above, the dynamic cutoff values (i.e., ide-
ographic fatigue diurnal cycles) used for classification 
were estimated every time a person received a new EMA 
prompt based on the observed fatigue scores obtained 
over the course of the study up to the current prompt, such 
that the dynamic classification cutoff itself was estimated 
with error due to uncertainty about a person’s true fatigue 
diurnal cycle. This error can be expected to be greater for 

Table 2   Mean number of items administered, sensitivity, specificity, and kappa by EMA item selection method in study 2

Note. Values in squared brackets are 95% credible intervals. Sensitivity, specificity, and kappa values with different superscripts are significantly 
different between EMA item selection methods at p < .05

Mean number of items per 
prompt

Sensitivity Specificity Kappa

Two items fixed 2.00 .68 [.65;.72] a .86 [.84;.88] a .54 [.50;.58] a

Three items fixed 3.00 .72 [.69;.75] b .87 [.84;.89] a .58 [.54;.62] b

Five items fixed 5.00 .78 [.75;.81] c .88 [.86;.90] b .66 [.62;.69] c

Variable length 3.41 [3.29; 3.52] .75 [.72;.78] b .88 [.86;.90] b .63 [.59;.66] c

JITA-EMA 2.98 [2.86; 3.10] .80 [.77;.83] c .90 [.88;.92] c .70 [.66;.73] d

Fig. 5   Sensitivity, specificity, and kappa by week and EMA item selection method in study 2
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individuals with fatigue diurnal cycles that vary mark-
edly from day to day compared to individuals with more 
consistent fatigue cycles. To illustrate this, the left panel 
of Fig. 6 shows the day-to-day variation in diurnal cycles 
for three selected individuals in the sample (each gray 

line represents the diurnal cycle for a day, derived from 
a multilevel cosinor model in which true fatigue scores 
were nested in study days). The diurnal pattern is most 
consistent across days for the first person (ID 193), mod-
erately consistent for the second person (ID 180), and least 

Fig. 6   Daily diurnal cycle (left panel) and root mean square error of observed classification cutoffs by study day (right panel) for three selected 
individuals, study 2
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consistent for the third person (ID 137). The right panel 
of Fig. 6 shows the root mean square errors (RMSEs) of 
the observed dynamic classification cutoffs for the three 
individuals per study day and for each EMA item selection 
method. Lower RMSEs indicate less error in the observed 
cutoffs. As expected, the RMSEs are lowest for the most 
consistent person (ID 193) and highest for the person with 
the least consistent diurnal cycle (ID 137). The RMSEs 
decrease over the course of the study as more EMA fatigue 
data to estimate the dynamic classification cutoff are 
sampled and the uncertainty about an individual’s cutoff 
decreases.

Importantly, besides sampling more time points, the 
uncertainty in the observed classification cutoffs may 
also be partially impacted by measurement error in the 
persons’ fatigue levels obtained at each EMA prompt, 
where the amount of measurement error differs between 
the EMA item selection methods. Figure 7 shows the 
RMSEs of the observed classification cutoffs across all 
individuals for each EMA item selection method. The 
RMSEs decreased similarly across study days for each 
of the methods, but they were consistently the highest 
when using a two-item fixed-length method (for which 
the amount of measurement error in each individual EMA 
prompt was the highest), and the lowest when JITA-EMA 
was used. This suggests that the higher classification 
accuracy of JITA-EMA can in part be attributed to lower 
errors in correctly identifying the dynamic classification 
cutoff values.

Discussion

In this article, we proposed JITA-EMA as a method to 
enable more efficient and accurate decisions about putative 
moments of risk or opportunity to guide the timing of treat-
ment delivery in JITAI when these decisions are based on 
EMA. It is widely recognized that measurement error can 
undermine and even nullify any attempt to deliver interven-
tions at the right moments in time (Carpenter et al., 2020; 
Collins et al., 2004). To date, however, research on the 
amount of measurement error in EMA is surprisingly rare 
(Calamia, 2019; Cranford et al., 2006; Scott et al., 2018), 
and there has not been any research on the extent to which 
this error impedes accurate categorizations of an individual’s 
current state. As would be expected, our simulations showed 
that measurement error in EMA directly translates into inac-
curate classifications of a person’s momentary states. We 
purposefully designed our simulations using actual data to 
have a realistic starting point and applying a fatigue instru-
ment with established high reliability (Lai et al., 2003). In 
this context, assessing momentary fatigue with two items 
using a traditional fixed-length strategy resulted in consider-
able false negative rates where 32% (study 2) to 37% (study 
1) of moments that were truly above the cutoff for “elevated 
fatigue” remained undetected (i.e., sensitivities of .68 and 
.63, respectively). Classification accuracy improved as more 
(3 or 5) items were administered using fixed-length assess-
ments, consistent with typical reliability gains associated 
with longer measurement instruments. Our results suggested 
that compared to these fixed-length assessments, the effi-
ciency of EMA can be improved with a variable-length stop-
ping rule and, even more so, when using adaptive item selec-
tion with JITA-EMA. In both studies, JITA-EMA resulted 
in classification accuracies comparable with or better than 
using five items per prompt while reducing the number of 
items by 54% (study 1) and 40% (study 2) compared to a 
fixed-length assessment with five items. This suggests that 
researchers could increase (potentially nearly double) the 
number of constructs assessed with EMA without increasing 
participant burden and without compromising classification 
accuracy. JITA-EMA also helped with estimating more exact 
cutoff values when we tested a dynamic classification sce-
nario in study 2, suggesting that the techniques may more 
broadly benefit the ability to make more precise momentary 
classifications that may inform treatment decisions.

Considerations for JITA‑EMA implementation

As we have illustrated throughout the paper, applying the 
adaptive assessment technique underlying JITA-EMA 
comes with much flexibility and many intricate decisions, 

Fig. 7   Root mean square error of observed classification cutoffs 
across all individuals by day in study 2
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many of which require conceptual considerations for 
which there currently is only very limited guidance avail-
able. Our goal in the presented simulations was not to 
identify and recommend the single best-performing ver-
sion of JITA-EMA, but to introduce the technique and to 
illustrate the decisions that go into its implementation. In 
our simulations, we programmed the CAT algorithm in 
JITA-EMA to initialize the selection of items based on the 
result from the prior EMA prompt (study 1) or based on 
the estimated fatigue diurnal cycle of an individual (study 
2). In other settings, there will undoubtedly be alternative 
and additional sources of information (e.g., background 
demographic characteristics, information about current 
location and activities) to initialize the best selection of 
items. We further allowed JITA-EMA to administer a 
maximum of five items from one specific item bank (the 
FACIT-F), applied one out of many available CAT item 
selection criteria (the Maximum Expected Information 
criterion; Choi & Swartz, 2009), and asked JITA-EMA to 
stop the assessment as soon as there was 95% confidence 
(arbitrarily selected) about a classification decision. For 
each of these choices there are many plausible alterna-
tives. The dynamically tailored cutoff in our second study 
was further tailored to the individuals’ expected diurnal 
rhythms, predicted from each person’s estimated fatigue 
scores after an arguably brief run-in period. Because our 
data were not from an intervention, these diurnal rhythms 
were assumed to remain unchanged over time, whereas 
they may be expected to change over the course of an 
intervention, and one could attempt to adjust the classifica-
tion cutoffs accordingly (e.g., by adding linear or nonlinear 
temporal trends to the regression model used for selec-
tion of the cutoff, assuming that the functional form of 
the expected temporal trends can be a priori defined). All 
of these factors could potentially impact the accuracy and 
efficiency of JITA-EMA in unknown ways. Nevertheless, 
as illustrated in this paper, CAT simulations (e.g., using 
mirtCAT) provide a powerful tool to estimate the effect 
of different versions of adaptive (and nonadaptive) item 
selection, and may aid researchers who wish to make more 
informed decisions about how to configure JITA-EMA (or 
how to choose among different fixed-length EMA surveys) 
in their studies.

Considerations for EMA item banks

Given that JITA-EMA is based on adaptive item selection 
from a larger bank of items, its functionality squarely rests 
on the availability of psychometrically sound item banks 
that meet the assumptions of IRT. In the last few decades, 
calibrated item banks have been developed for a large 
and increasing number of self-reported symptoms, health 
behaviors, and emotional experiences (e.g., Cella et al., 

2010; Gershon et al., 2012; Tulsky & Kisala, 2015), but 
most existing item banks were developed for use in tradi-
tional (e.g., cross-sectional) settings and use self-reports 
with longer (e.g., past 7 days) recall periods. In the present 
simulation studies, we used the FACIT-F, assuming that 
the instrument could plausibly serve as an item bank for 
momentary assessments. It is customary in EMA research 
to adapt existing instruments by modifying the recall period 
to fit with momentary self-reporting, but the extent to which 
this modification impacts the psychometric characteristics 
of self-report instruments is not well understood (Schneider 
et al., 2013). Importantly, for a set of items to be suitable for 
use with CAT and CCT, they need to perform in the same 
way across different groups or time points (i.e., show no 
“differential item functioning,” DIF). This requirement is 
especially challenging when it comes to the measurement 
of dynamic changes within individuals with EMA, because 
items can function differentially (show DIF) across within-
person contexts (e.g., location, time of day) and may gradu-
ally shift their meaning over time and with repeated assess-
ments (item parameter “drift”) (Schneider & Stone, 2016). 
Such within-person DIF effects may even differ across 
groups or individuals. These complexities notwithstanding, 
paying close attention to the importance of psychometrically 
sound momentary instruments would not only benefit the 
implementation of JITA-EMA, but also the standardization, 
replicability, and transparency of EMA measures in general.

Limitations and directions for future 
research

The present study has several limitations. We used data 
from a real-world example to evaluate the performance of 
JITA-EMA and other item selection methods. Even though 
this allowed us to simulate the momentary classifications a 
researcher would have obtained in an actual study, our results 
are limited to a single data set and a sample of patients with 
chronic pain, and the results do not necessarily generalize 
to other samples or conditions.

Furthermore, the simulations were based on data from 
an observational (not a JITAI) study in which participants 
showed high compliance (91% on average) with the EMA 
protocol, whereas EMA completion rates are typically lower 
in observational EMA studies (May et al., 2018; Wen et al., 
2017) and in JITAIs using EMA (Perski et al., 2022). Even 
though missed EMA prompts will not affect the CAT item 
selection process at a given EMA prompt, they may affect 
the quality of information available about an individual 
when initial item selection and classification cutoffs are 
dynamically tailored to scores from previous EMA prompts. 
Especially when data are missing not at random (e.g., when 
EMA prompts were more likely missed when fatigue is 
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high), systematic bias may be introduced into the estimation 
of dynamically tailored cutoff values. The impact of differ-
ent missing value patterns on the accuracy and efficiency of 
EMA item selection methods (including JITA-EMA) could 
be examined in future simulations.

Our simulations were based on a single treatment tailor-
ing variable, fatigue. Although this was deemed reasonable 
for the present proof-of-concept demonstration, treatment 
decisions in JITAI are not necessarily based on only one 
variable. Even though the majority of JITAIs utilize EMA 
for treatment decisions (Perski et al., 2022), they often inte-
grate input from multiple EMA measures or combine EMA 
with passively collected (e.g., geolocation) data (Hardeman 
et al., 2019; Perski et al., 2022). Techniques to combine 
the adaptive administration of items across multiple self-
report measures using multivariate CAT are already avail-
able (Morris et al., 2017). The mirtCAT package is suitable 
for simulation and real-time application of both univariate 
and multivariate computerized adaptive tests (Chalmers, 
2016). In a multivariate CAT, information from correlated 
latent constructs is leveraged to increase efficiency, such that 
those items are selected to help most quickly increase the 
information (i.e., reduce the measurement error) for two or 
more latent constructs simultaneously. JITA-EMA applica-
tions could be expanded accordingly, keeping in mind that 
this increases the number and complexity of CAT and CCT 
design choices (e.g., whether the selection of items should 
prioritize the reduction of measurement error for constructs 
that are deemed more important for classification than oth-
ers, and whether stopping rules to terminate the assessment 
should be applied globally or specifically for each construct).

We have presented and discussed JITA-EMA with 
a focus on precision and efficiency of measurement, 
but researchers may also want to control the content of 
EMA items selected. An obvious concern is that when 
respondents receive the same items dozens of times, they 
may start to engage in survey satisficing and careless 
responding (Jaso et al., in press). This issue is inherent 
in conventional EMA that administers the same set of 
items at every prompt (Silvia et al., 2014), but it can also 
arise in CAT where items that are overall more informa-
tive (i.e., those that tend to most quickly reduce meas-
urement error) may be administered more frequently 
than overall less informative items. CAT item selection 
methods can be adjusted by including “exposure control” 
strategies to help reduce excessive use of highly inform-
ative items, or by including content balancing strategies 
to ensure that various contents covered by the items in a 
bank are covered at each assessment occasion (Chalm-
ers, 2016; Leung et al., 2003; Stocking & Lewis, 2002). 
Correspondingly, JITA-EMA could be coupled with 
exposure control and/or content balancing methods to 
avoid repeated selection of the same items over multiple 

EMA prompts. Although this might possibly enhance 
participant engagement and facilitate careful responding, 
it should also be noted that, at present, there is no clear 
evidence to support this conjecture. It is also possible 
that frequently switching the specific items (including 
their order) across prompts could confuse respondents, 
require more time, and lead to frustration, disengage-
ment, and lower compliance with completing assess-
ments. An advantage of CAT item selection methods is 
that different degrees of exposure control and content 
balancing can be directly manipulated, and this feature 
could be leveraged in future research to experimentally 
compare the extent to which higher versus lower redun-
dancies in the selection of items across prompts affects 
participant behavior and the quality of EMA data.

A critical component of treatment tailoring in JITAI is 
deciding not only when to deliver an intervention, but also 
which type, components, and dosage should be delivered at a 
given point in time (Nahum-Shani et al., 2018). These deci-
sions are not within the reach of JITA-EMA. The technique 
is intended only to help improve the detection of momen-
tary states of risk or opportunity by providing more efficient 
classifications of momentary states. A possible direction for 
future work is to integrate JITA-EMA into larger control 
system engineering models (e.g., Deshpande et al., 2014) 
that aim to translate real-time observations into adaptive 
treatment decisions.

Finally, an important direction for future work would 
be to test the effects of JITA-EMA in actual studies. This 
includes not only effects on item delivery (average num-
ber and distribution of items, time to complete each sur-
vey), but also whether JITA-EMA might affect EMA data 
quality by impacting EMA completion rates, reducing per-
ceived assessment burden, and minimizing potential care-
less responses. Ultimately, what matters most and can only 
be addressed in a real study is whether JITA-EMA has the 
potential to improve JITAIs, including potential effects on 
sustained participant engagement and satisfaction with the 
intervention, and, most importantly, intervention efficacy.

Conclusion

Random error in measurements directly translates to unsys-
tematic and “noisy” tailoring decisions in JITAIs (Collins 
et al., 2004), and participant burden associated with exten-
sive momentary self-reports may demotivate participants 
engaged in these interventions (Goldstein et al., 2020). JITA-
EMA represents one approach to address these two issues 
with adaptive item selection applied to EMA. Employing 
this tool in future research could set the stage for a more 
optimal implementation of EMA in JITAIs.
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