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Abstract
BACKGROUND: Resting heart rate (RHR), has been related to 
increased risk of dementia, but the relationship between RHR 
and brain age is unclear. 
OBJECTIVE: We aimed to investigate the association of 
RHR with brain age and brain age gap (BAG, the difference 
between predicted brain age and chronological age) assessed 
by multimodal Magnetic Resonance Imaging (MRI) in mid- and 
old-aged adults.
DESIGN: A longitudinal study from the UK Biobank 
neuroimaging project where participants underwent brain MRI 
scans 9+ years after baseline. 
SETTING: A population-based study.
PARTICIPANTS: A total of 33,381 individuals (mean age 54.74 ± 
7.49 years; 53.44% female).
MEASUREMENTS: Baseline RHR was assessed by blood 
pressure monitor and categorized as <60, 60–69 (reference), 
70–79, or ≥80 beats per minute (bpm). Brain age was predicted 
using LASSO through 1,079 phenotypes in six MRI modalities 
(including T1-weighted MRI, T2-FLAIR, T2*, diffusion-MRI, 
task fMRI, and resting-state fMRI). Data were analyzed using 
linear regression models.
RESULTS: As a continuous variable, higher RHR was associated 
with older brain age (β for per 1-SD increase: 0.331, 95% [95% 
confidence interval, CI]: 0.265, 0.398) and larger BAG (β: 0.263, 
95% CI: 0.202, 0.324). As a categorical variable, RHR 70-79 bpm 
and RHR ≥80 bpm were associated with older brain age (β [95% 
CI]: 0.361 [0.196, 0.526] / 0.737 [0.517, 0.957]) and larger BAG 
(0.256 [0.105, 0.407] / 0.638 [0.436, 0.839]), but RHR< 60 bpm 
with younger brain age (-0.324 [-0.500, -0.147]) and smaller BAG 
(-0.230 [-0.392, -0.067]), compared to the reference group. These 
associations between elevated RHR and brain age were similar 
in both middle-aged (<60) and older (≥60) adults, whereas 
the association of RHR< 60 bpm with younger brain age and 
larger BAG was only significant among middle-aged adults. In 
stratification analysis, the association between RHR ≥80 bpm 
and older brain age was present in people with and without 
CVDs, while the relation of RHR 70-79 bpm to brain age present 
only in people with CVD.
CONCLUSION: Higher RHR (>80 bpm) is associated with older 
brain age, even among middle-aged adults, but RHR< 60 bpm 
is associated with younger brain age. Greater RHR could be an 
indicator for accelerated brain aging.

Key words: Resting heart rate, brain age, magnetic resonance imaging, 
UK Biobank. 

Introduction

Resting heart rate (RHR) is used to describe the 
frequency of the cardiac cycle, which is a major 
determinant of cardiovascular performance 

and an indicator of autonomic nervous system activity 
and metabolic rate (1, 2). During the aging process, 
abnormal changes in RHR may occur due to decreased 
cardiovascular fitness and autonomic tone or sinus node 
dysfunction (2-4). An elevated RHR has been linked to an 
increased risk of mortality and morbidity among older 
adults (1, 5), as well as faster cognitive decline and a 
higher risk of dementia (6-11).   

Brain magnetic resonance imaging (MRI) is an 
important tool for understanding brain health, offering 
an opportunity to evaluate the possible mechanisms 
underlying brain aging (12, 13). Several studies have 
investigated the association of elevated RHR with 
structural or functional brain MRI measures, with 
inconsistent findings (7, 8,  14-18).  Meanwhile, 
machine learning methods based on multimodal MRI 
measurements provide the possibility to assess age-
related changes in the brain in a more comprehensive 
manner (19). For example, predicted brain age combines 
several individual MRI measures (regional brain volume, 
cortical thickness, fractional anisotropy, functional 
connection, etc.).

In contrast to individual MRI measures, predicted 
brain age integrates information on multiple MRI 
measures into a single metric, factoring in the 
complex patterns of subtle brain structural changes 
and the interactions between different brain regions, 
thus yielding a more sensitive measure of brain aging 
(20). The difference between predicted brain age and 
an individual’s actual chronological age, the brain 
age gap (BAG), is thought to reflect neuroanatomical 
abnormalities and may be a marker of overall brain 
health (21). To date, no studies have addressed the 
association between RHR and brain age in middle-aged 
and older adults, and it is unclear whether the RHR-
brain age relationship varies according to cardiovascular 
disease (CVD) status.
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In the present study, using data from middle-aged 
(<60) and older (≥60) adults in the UK Biobank, we aimed 
to: (1) assess the association of RHR with brain age and 
BAG and (2) explore the role of CVD in these associations. 

Methods 

Study design and population 

This study used data from the UK Biobank, a large-
scale population-based cohort of 502,412 UK residents 
aged from 37 to 73 years (22). The UK Biobank study 
received ethical approval from the National Health 
Services (NHS) National Research Ethics Service (Ref 
11/NW/0382) and all enrolled participants provided 
informed and written consent. 

The baseline survey started in 2006 and a sub-sample 
of 42,806 participants underwent MRI assessment 
beginning in 2014. Of them, 34,296 participants with 
complete brain MRI data were included in the brain age 
construct. Then, three subsets were defined, including a 
training set (for training the brain age model, n= 3,484), a 
validation set (for validating model performance, n= 871), 
and a testing set (n= 29,941). The training and validation 
data (in a ratio of 8:2) included people who met health 
criteria at the time of the scan (n= 4,355), thus excluding 
people with an ICD-10 diagnosis (field ID 41270), self-
reported long-term illness disability or frailty (field ID 
2188), diabetes (field ID 2443), history of stroke (field ID 
4056), and self-reported fair or poor health status (field ID 
2178). 

After further excluding 915 participants with prevalent 
chronic brain disorders (n=864; Table S1), missing 
information on RHR (n=17), and RHR <40 (n=35), 33,381 
participants were included in the RHR-brain aging 
analysis (Figure 1).

Data collection

Participants underwent a comprehensive physical 
examination and clinical evaluation at baseline. In 
addition, information on demographic characteristics, 
socioeconomic status, and lifestyle factors was collected 
through a computerized touchscreen questionnaire 
(Method S1, Table S2, and Table S3). 

Assessment of RHR

The protocol RHR measurement at the baseline 
assessment is described in detail in a dedicated document 
(23). Participants were asked to loosen or remove any 
restrictive clothing and sit with their feet parallel to 
each other, toes pointing forward, and soles of the feet 
resting flat on the floor. RHR was then measured on 
the participant’s left arm (or right arm if the left side 
was affected by amputation, shunt, mastectomy, or 
axillary clearance) with the Omron 705 IT electronic 
blood pressure monitor (OMRON Healthcare Europe 
B.V. Kruisweg 577 2132 NA Hoofddorp). Two readings 
were recorded for each participant and the average of 
the two measurements was used in our analysis. When 

Figure 1. Flowchart of participants included in the study

Abbreviation: MRI = magnetic resonance imaging; RHR = resting heart rate; MAE = mean absolute error.
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considered as a categorical variable, RHR was classified 
as <60, 60-70 (reference), 70-79, and ≥80 beats per minute 
(bpm) according to previous studies (6, 10).

MRI data acquisition and pre-processing

Details on the UK Biobank brain MRI data acquisition 
and processing are available on the UK Biobank 
website in the brain scan protocol and brain imaging 
documentation (Method S2) (24, 25). Summary measures 
of imaging-derived phenotypes were generated with 
an image-processing pipeline developed and run on 
behalf of the UK Biobank, using publicly available image 
processing tools FSL (the FMRIB Software Library, version 
5.0.10, http://fsl.fmrib.ox.ac.uk/fsl) and FreeSurfer 
(version 6.0) (26). Finally, 1,079 neuroimaging phenotypes 
were generated from five modalities, including 
T1-weighted (n=165), T2-FLAIR (n=1; total volume of 
white-matter hyperintensities), SWI (n=14), diffusion-MRI 
(n=675), task fMRI (n=14), and resting-state fMRI (n=210) 
(Table S4). All MRI phenotypes were Z-transformed 
before analysis.

Statistical analysis

RHR was operationalized as both a continuous and 
a categorical variable. Baseline characteristics of the 
study population by RHR category were analyzed using 
chi-square tests for categorical variables and one-way 
ANOVA for continuous variables. Alpha was set at 0.05 
for all analyses and results were corrected for multiple 
comparisons using the false discovery rate (FDR). All 
statistical analyses were performed using Python (version 
3.8.0 with sklearn), Stata SE 16.0 (Stata Corp, College 
Station, Texas), and R (version 4.1.1).

Assessment of brain age and BAG

Least Absolute Shrinkage and Selection Operator 
(LASSO) regression was trained in the training dataset. 
The performance of the model was evaluated using 
mean absolute error (MAE) on a standardized validation 
dataset (with mean absolute error =3.232, R2 = 0.690, 
and Pearson’s r = 0.830). Next, the model was used to 
predict brain age in the entire population (the phenotypes 
and the corresponding coefficients are list in Table 
S5). Moreover, we corrected the age bias in brain age 
prediction as the corrected brain age=(original brain 
age-β)/α (where coefficients α and β are the slope and 
intercept of the linear regression model used to estimate 
the brain age in the training set: brain age_(training 
set)=α*chronological age_(training set)+β) (27). BAG was 
defined as corrected brain age minus chronological age. A 
positive BAG means that the predicted brain age is higher 
than chronological age (i.e., accelerated aging); a negative 
BAG means that the predicted brain age is lower (i.e., 
delayed aging) (21).

Association between RHR and Brain age

Linear regression models were used to estimate the 
β-coefficients and 95% confidence intervals (CIs) for the 
association between RHR and brain age or BAG among 
middle-aged (<60 year) and older (≥60 years) participants. 
The basic models were adjusted for age, sex, and 
education. Multivariable-adjusted models were further 
adjusted for race, socioeconomic status, BMI, alcohol 
consumption, smoking, physical activity, social contact, 
hypertension, diabetes, heart disease, medications that 
reduce RHR (beta blockers and calcium blockers), and 
apolipoprotein E (APOE) ε4. Stratified analyses were 
performed to explore the role of CVD in the association of 
RHR with brain age and BAG. Statistical interaction was 
examined by creating an indicator variable with the cross-
product of two variables.

In sensitivity analysis, we repeated the analyses after 1) 
stratifying by APOE ε4, physical activity, and polygenic 
risk score for AD (PRSAD); 2) further adjusting for DASH 
diet score and PRSAD; and 3) performing multiple 
imputation for missing values of covariates using Fully 
Conditional Specification (FCS) method.

Results

Baseline characteristics

The mean age at baseline was 54.74 ± 7.49, and 53.44% 
of participants were female. Of the participants, the mean 
RHR was 67.79 ± 10.43 bpm. Compared to participants 
with lower RHR, those with higher RHR were more likely 
to be older and female; to have, BMI and social contact, 
lower education level, socioeconomic status (SES), and 
physical activity; and to be non-drinkers and current 
smokers. In addition, they tended to have a history of 
hypertension, diabetes, and heart disease, and higher 
usage of calcium channel blockers but lower usage of 
beta-blockers (Table 1). 

Association of resting heart rate with brain age 
and BAG

Among all participants, the time interval between 
study entry and MRI assessment was 8.94 ± 1.78 years. 
Higher RHR was associated with older brain age (β for 
per 1-SD increase: 0.331, 95% CI: 0.265, 0.398) and larger 
BAG (β: 0.263, 95% CI: 0.202, 0.324) when RHR was 
analyzed as a continuous variable (Table 2). Furthermore, 
when RHR was categorized, RHR 70-79 bpm and RHR 
≥80 bpm were related to older brain age (β [95% CI]: 
0.361 [0.196, 0.526] / 0.737 [0.517, 0.957]) and larger BAG 
(β [95% CI]: 0.256 [0.105, 0.407] / 0.638 [0.436, 0.839]) 
compared to RHR 60-69 bpm (Table 2). In addition, RHR 
<60 bpm was associated with younger brain age (β: 
-0.324, 95% CI: -0.500, -0.147) and smaller BAG (β: -0.230, 
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95% CI: -0.392, -0.067). The results of basic-adjusted 
models were similar to the multi-adjusted models (Table 
2). Regression coefficients for the covariates in relation to 
brain volumes were shown in Supplementary Table 7.

In age-stratified analyses, the association of RHR ≥80 
bpm with older brain age and larger BAG was strongest 
among middle-aged participants, but was also present 
among older participants (Table 2). In contrast, the 
association between RHR <60 bpm and younger brain 
age and smaller BAG was only significant among middle-
aged participants (Table 2). There was a significant 
multiplicative interaction between RHR and age group 
for brain age and BAG (P-interaction= 0.001 and 0.031).

Role of CVD

In CVD-stratified analyses (Figure 2 and Table S6), 
RHR ≥80 bpm was associated with older brain age and 
larger BAG compared to RHR 60-69 bpm among both 
CVD and CVD-free participants, regardless of age group. 
However, the association between RHR 70-79 bpm and 
older brain age was only present in participants with 
CVD. There was no statistical interaction between RHR 
and CVD on brain age or BAG in the multi-variable 
adjusted models (all P-interactions>0.05).

Supplementary analysis

Largely similar results were obtained after we 
conducted the following sensitivity analyses: 1) 

Table 1. Baseline characteristics of the study populations by resting heart rate (RHR) group (n= 33,381)
Characteristics RHR (bpm) P value

<60 
(n = 7,341, 22.0%)

60-69 
(n = 12,948, 38.8%)

70-79 
(n = 9,012, 27.0%)

≥ 80 
(n = 4,089, 12.2%)

Age (y) 55.06 (7.45) 54.74 (7.44) 54.54 (7.58) 54.78 (7.54) <0.001
Female 2,996 (40.81) 7,137 (55.12) 5,368 (59.57) 2,321 (56.89) <0.001
Race-White 6,821 (93.16) 11,965 (92.63) 8,326 (92.64) 3,774 (92.80) 0.526
Townsend deprivation index -2.72 (-3.95, -0.75) -2.63 (-3.90, -0.57) -2.55 (-3.85, -0.38) -2.47 (-3.79, -0.14) <0.001
Education (college) 3,506 (48.43) 5,942 (46.60) 4,082 (46.03) 1,818 (45.47) 0.005
BMI (kg/m2) 25.77 (3.60) 26.22 (3.93) 26.83 (4.33) 27.82 (4.95) <0.001
Alcohol consumption status <0.001
Never 117 (1.59) 284 (2.19) 248 (2.75) 132 (3.24)
Former drinker 132 (1.80) 253 (1.95) 170 (1.89) 111 (2.72)
Current drinker 7,088 (96.61) 12,405 (95.85) 8,591 (95.36) 3,834 (94.04)
Smoking status <0.001
Never 4,377 (59.76) 7,879 (60.99) 5,567 (61.91) 2,538 (62.30)
Former smoker 2,541 (34.69) 4,333 (33.54) 2,849 (31.68) 1,203 (29.53)
Current smoker 406 (5.54) 706 (5.47) 576 (6.41) 333 (8.17)
Regular physical activity 4,563 (62.95) 7,771 (60.93) 5,258 (59.30) 2,366 (59.25) <0.001
Regular social contact 2686 (37.05) 4983 (39.07) 3609 (40.70) 1627 (40.75) <0.001
Hypertension 3,101 (42.24) 5,267 (40.68) 4,094 (45.43) 2,333 (57.18) <0.001
Diabetes 134 (1.83) 271 (2.09) 244 (2.71) 225 (5.51) <0.001
Heart disease 486 (6.62) 367 (2.83) 236 (2.62) 126 (3.09) <0.001
Medication
Beta-blockers 673 (9.17) 366 (2.83) 146 (1.62) 44 (3.58) <0.001
Calcium blockers 205 (2.79) 396 (3.06) 318 (3.53) 205 (5.02) <0.001
APOE ε4 carrier 1,769 (28.69) 2,972 (27.31) 2,057 (27.32) 900 (26.97)  0.165
Brain age 63.36 (6.13) 63.36 (6.06) 63.49 (6.31) 64.09 (6.35) <0.001
Brain age gap 0.01 (4.90) 0.28 (4.94) 0.62 (5.32) 1.28 (5.30) <0.001
Abbreviations: APOE ε4 = apolipoprotein E epsilon; BMI = body mass index; PRSAD = polygenetic risk score of Alzheimer’s disease. Missing data: Race = 88; Education 
= 524; BMI = 30; Townsend deprivation index = 31; Alcohol consumption = 16; Smoking = 73; Regular social contact = 518; Regular physical activity = 1,101; APOE ε4 
carrier = 5468.
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stratifying by APOE ε4 (Table S8), physical activity level 
(Table S9), and PRSAD (Table S10); 2) further adjusting 
for DASH diet score and PRSAD (Table S11 and S12); and 
3) performing multiple imputation for missing values of 
covariates (Table S13). 

Discussion

In this large neuroimaging study with multimodal MRI 
measures, we constructed a brain age prediction model 
based on LASSO regression and found that 1) RHR 70-79 
bpm and RHR≥80 bpm was associated with older brain 
age and larger BAG among both middle-aged and older 
adults; 2) RHR <60 bpm was associated with younger 
brain age and smaller BAG only among middle-aged 
participants; and 3) the association of RHR 70-79 with 
older brain age was only present among people with 
CVDs. 

RHR and brain aging

Several previous studies have linked RHR to 
individual MRI measures (7, 8, 14-18). Some studies 
have reported associations between elevated RHR 
and more severe brain lesions including white 
matter hyperintensity (8, 14, 16), brain infarction (16), 
and ischemic lesions (8), while others related higher 

RHR to smaller brain volumes including total brain 
(17) and some subfields of the hippocampus (7), but 
with some inconsistent findings (8). Limited studies 
evaluated the association between elevated RHR and 
poor brain functional connectivity (15, 18). However, 
these studies offer limited support for the association 
between RHR and brain aging as they solely examined 
separate MRI metrics that may not adequately capture 
the extent of brain aging in individuals. By ‘learning’ 
the correspondence between patterns in structural or 
functional multimodal neuroimaging data and an age 
‘label’, machine-learning algorithms can formulate 
massively high-dimensional regression models, fitting 
large neuroimaging datasets as independent variables 
to predict chronological age as the dependent variable. 
Predicted brain age and derived BAG provide a 
more comprehensive description of brain aging (20). 
In the present study, we found that elevated RHR was 
associated with unhealthy brain aging, including older 
brain age and larger BAG. Our findings provide further 
evidence that elevated RHR may play a role in the process 
of brain aging. Further, after stratification by age, the 
association of elevated RHR with older brain age and 
larger BAG remains significant among middle-aged 
and older adults. These results add a growing body of 
evidence that the effect of RHR on brain aging may begin 
as early as middle age. To our knowledge, this is the first 

Table 2. The association of resting heart rate (RHR) with brain age and brain age gap (BAG)
RHR Brain age BAG

β (95% CI) * β (95% CI) † β (95% CI) † β (95% CI) †

All participants (N = 33,381)

Continuous (per 1-SD increase)
Categories

0.432 (0.375, 0.489) ‡ 0.331 (0.265, 0.398) ‡ 0.399 (0.346, 0.452) ‡ 0.263 (0.202, 0.324) †

< 60 bpm -0.355 (-0.515, -0.196) ‡ -0.324 (-0.500, -0.147) ‡ -0.311 (-0.458, -0.164) ‡ -0.230 (-0.392, -0.067) †

60-69 bpm Reference Reference Reference Reference

70-79 bpm 0.411 (0.262, 0.561) ‡ 0.361 (0.196, 0.526) ‡ 0.346 (0.209, 0.484) ‡ 0.256 (0.105, 0.407) †

≥ 80 bpm 1.069 (0.873, 1.265) ‡ 0.737 (0.517, 0.957) ‡ 1.033 (0.853, 1.213) ‡ 0.638 (0.436, 0.839) †

Middle-aged (40-60 years, n = 22,923)

Continuous (per 1-SD increase)
Categories

0.412 (0.345, 0.480) ‡ 0.271 (0.194, 0.348) ‡ 0.386 (0.324, 0.449) ‡ 0.201 (0.130, 0.272) †

< 60 bpm -0.405 (-0.592, -0.218) ‡ -0.270 (-0.475, -0.066) ‡ -0.388 (-0.561, -0.216) ‡ -0.196 (-0.384, -0.007)

60-69 bpm Reference Reference Reference Reference

70-79 bpm 0.361 (0.189, 0.534) ‡ 0.322 (0.133, 0.511) ‡ 0.307 (0.147, 0.467) ‡ 0.222 (0.048, 0.396) †

≥ 80 bpm 0.973 (0.745, 1.201) ‡ 0.604 (0.349, 0.858) ‡ 0.920 (0.709, 1.131) ‡ 0.461 (0.226, 0.695) †

Older-aged (60+ years, n = 10,458)

Continuous (per 1-SD increase)
Categories

0.457 (0.349, 0.566) ‡ 0.438 (0.310, 0.565) ‡ 0.411 (0.312, 0.510) ‡ 0.375 (0.258, 0.491) †

< 60 bpm -0.255 (-0.558, 0.048) -0.431 (-0.774, -0.089) -0.153 (-0.429, 0.123) -0.298 (-0.610, 0.014)

60-69 bpm Reference Reference Reference Reference

70-79 bpm 0.485 (0.195, 0.774) ‡ 0.399 (0.074, 0.724) ‡ 0.398 (0.133, 0.662) ‡ 0.281 (-0.014, 0.576)

≥ 80 bpm 1.239 (0.866, 1.612) ‡ 0.974 (0.549, 1.400) ‡ 1.237 (0.898, 1.577) ‡ 0.972 (0.585, 1.359) †

P-interaction <0.001† 0.031 †

* Model adjusted for age, sex, and education. † Model adjusted for age, sex, education, race, Socioeconomic status, body mass index, alcohol consumption, smoking, 
physical activity, social contact, hypertension, diabetes, heart disease, beta-blockers, calcium blockers, and APOE ε4. ‡ FDR P <0.05.
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study to address the association of RHR with brain age 
and BAG, supported by multimodal brain MRI data.

Role of CVD in RHR-brain age association

RHR is a strong predictor of cardiovascular events 
including hypertension, myocardial infarction, angina, 
congestive heart failure, and atrial fibrillation (28, 29). 
Moreover, these non-stroke CVDs are associated with 
brain aging (30-32). However, to date, the comprehensive 
differences in the RHR-brain aging association across 
different CVD states have not been well known. In the 
current study, we found that the association between 
RHR ≥80 bpm and brain aging was present not only in 
the CVD population but also in the non-CVD population, 
with no significant interaction between RHR and CVD on 
brain aging. Our findings suggest that monitoring RHR 
is beneficial for indicating brain aging among individuals 
both with and without CVD. 

Potential mechanisms underlying RHR-brain 
age association

There are several mechanisms whereby elevated RHR 
may link to brain aging. First, increased RHR may lead 

to decreased cerebral blood flow, aggravating ischemia 
or white matter lesions, and lacunar infarction in some 
brain regions (33, 34). In addition, high RHR can lead 
to cerebral hypoxia, which causes vascular endothelial 
dysfunction and enhanced coagulation activity, 
bringing vascular and neurodegenerative damage in 
the brain (35, 36). Second, elevated RHR may also be 
a marker of autonomic dysfunction, which may drive 
the development of cognitive decline and dementia by 
activating inflammatory pathways and increasing the 
levels of inflammatory markers such as hs-CRP, IL-6, and 
fibrinogen (37, 38). Third, brain aging and CVDs may 
share similar pathogenic processes (39, 40). However, the 
association of elevated RHR with older brain age and 
larger BAG remained significant among CVD-free people 
and after controlling for traditional cardiovascular risk 
factors, which may indicate an independent effect of RHR 
on brain aging. Future studies are warranted to better 
understand the mechanisms underlying the influence of 
RHR on brain health.

Strength and limitations

Strengths of this study include the large-scale 
community-based design with a comprehensive data 

Figure 2. Association of RHR with brain age and BAG: stratified by CVD

The figure represents the association between RHR (reference: 60-69 bpm) and brain age and BAG among CVD and CVD-free participants: (A/B) RHR-brain age/BAG 
association among middle-aged adults; (C/D) RHR-brain age/BAG association among older-aged adults. Model adjusted for age, sex, education, race, Socioeconomic 
status, body mass index, alcohol consumption, smoking, physical activity, social contact, diabetes, beta-blockers, calcium blockers, and APOE ε4. The height of each bar in 
the plot represents the point estimate of β, while the error bars represent the 95% confidence intervals of β.
* FDR P< 0.05.
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collection procedure. Additionally, the UK Biobank 
provides image-derived phenotypes of various brain 
measures, offering an opportunity to calculate 
multimodal brain age using machine learning models. 
Nonetheless, some limitations should be acknowledged. 
First, the UK Biobank participants were volunteers and 
generally healthier and more highly educated than the 
general population (41). We noted that all participants 
who underwent MRI scans had high economic status, and 
the differences in SES between the different RHR groups 
may be due to the large sample. Moreover, our analytical 
sample consisted of participants who underwent brain 
MRI scans and were free from chronic brain disorders, 
which is a relatively healthier subset in the overall UK 
Biobank population. This might have contributed to 
a misestimating of the magnitude of the association 
between elevated RHR and brain aging. Furthermore, our 
findings may only be generalizable to demographically 
similar cohorts, and this limitation precludes the 
generalization of these findings to the general population. 
Second, although the direction of the associations of RHR 
with brain age and BAG may indicate the potential effect 
of RHR itself on brain aging, these results cannot draw 
causal inferences. However, a subgroup of approximately 
10,000 participants from UKB is currently undergoing 
repeat brain MRI scans (42), providing an opportunity 
for future studies to explore the longitudinal association 
between RHR and brain aging. Third, selection bias might 
have occurred due to missing data. However, the results 
were not much altered after repeating the analysis using 
multiple imputations for missing variables.

Conclusion

In conclusion, our study provides new evidence that 
elevated RHR may associated with brain aging across 
middle- and older-age and decreased RHR (<60 bpm) was 
related to younger brain age among middle-aged adults. 
CVD may play a role in the association of RHR 70-79 bpm 
with older brain age and larger BAG. The RHR is a very 
commonly used parameter in clinical settings and can be 
obtained more easily and quickly than complex cognitive 
assessments. Moreover, there are a number of drugs (such 
as beta-blockers) that can be used to control RHR, and if a 
longitudinal or causal association between RHR and brain 
aging can be identified, it may open up new possibilities 
for intervention and treatment of cognitive impairment 
and dementia. Thus, future longitudinal studies or 
Mendelian randomization are needed to explore the 
longitudinal effects of RHR on brain aging. 
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